27 research outputs found

    Learning-based hybrid TDMA-CSMA MAC protocol for virtualized 802.11 WLANs

    Get PDF
    This paper presents an adaptive hybrid TDMA-CSMA MAC protocol to improve network performance and isolation among service providers (SPs) in a virtualized 802.11 network. Aiming to increase network efficiency, wireless virtual-ization provides the means to slice available resources among different SPs, with an urge to keep different slices isolated. Hybrid TDMA-CSMA can be a proper MAC candidate in such scenario benefiting from both the TDMA isolation power and the CSMA opportunistic nature. In this paper, we propose a dynamic MAC that schedules high-traffic users in the TDMA phase with variable size to be determined. Then, the rest of active users compete to access the channel through CSMA. The objective is to search for a scheduling that maximizes the expected sum throughput subject to SP reservations. In the absence of arrival traffic statistics, this scheduling is modeled as a multi-armed bandit (MAB) problem, in which each arm corresponds to a possible scheduling. Due to the dependency between the arms, existing policies are not directly applicable in this problem. Thus, we present an index-based policy where we update and decide based on learning indexes assigned to each user instead of each arm. To update the indexes, in addition to TDMA information, observations from CSMA phase are used, which adds a new exploration phase for the proposed MAB problem. Throughput and isolation performance of the proposed self-exploration-aided index-based policy (SIP) are evaluated by numerical results

    Bidirectional LiFi Attocell Access Point Slicing Scheme

    Get PDF
    LiFi attocell access networks will be deployed everywhere to support diverse applications and service provisioning to various end-users. The LiFi infrastructure providers will need to offer LiFi access points (APs) resources as a service. This, however, requires a research challenge to be solved to dynamically and effectively allocate resources among service providers (SPs) while guaranteeing performance isolation among them and their respective users. This paper introduces an autonomic resource slicing (virtualization) scheme, which realizes autonomic management and configuration of virtual APs, in a LiFi attocell access network, based on SPs and their users service requirements. The developed scheme comprises of traffic analysis and classification, a local AP controller, downlink and uplink slice resources manager, traffic measurement, and information collection modules. It also contains a hybrid medium access protocol and an extended token bucket fair queueing algorithm to support uplink access virtualization and spectrum slicing. The proposed resource slicing scheme collects and analyzes the traffic statistics of the different applications supported on the slices defined in each LiFi AP and distributes the available resources fairly and proportionally among them. It uses a control algorithm to adjust the minimum contention window of user devices to achieve the target throughput and ensure airtime fairness among SPs and their users. The developed scheme has been extensively evaluated using OMNeT++. The obtained results show various resource slicing capabilities to support differentiated services and performance isolation

    Belaidžio ryšio tinklų terpės prieigos valdymo tyrimas

    Get PDF
    Over the years, consumer requirements for Quality of Service (QoS) has been growing exponentially. Recently, the ratification process of newly IEEE 802.11ad amendment to IEEE 802.11 was finished. The IEEE 802.11ad is the newly con-sumer wireless communication approach, which will gain high spot on the 5G evolution. Major players in wireless market, such as Qualcomm already are inte-grating solutions from unlicensed band, like IEEE 802.11ac, IEEE 802.11ad into their architecture of LTE PRO (the next evolutionary step for 5G networking) (Qualcomm 2013; Parker et al. 2015). As the demand is growing both in enter-prise wireless networking and home consumer markets. Consumers started to no-tice the performance degradation due to overcrowded unlicensed bands. The un-licensed bands such as 2.4 GHz, 5 GHz are widely used for up-to-date IEEE 802.11n/ac technologies with upcoming IEEE 802.11ax. However, overusage of the available frequency leads to severe interference issue and consequences in to-tal system performance degradation, currently existing wireless medium access method can not sustain the increasing intereference and thus wireless needs a new methods of wireless medium access. The main focal point of this dissertation is to improve wireless performance in dense wireless networks. In dissertation both the conceptual and multi-band wireless medium access methods are considered both from theoretical point of view and experimental usage. The introduction chapter presents the investigated problem and it’s objects of research as well as importance of dissertation and it’s scientific novelty in the unlicensed wireless field. Chapter 1 revises used literature. Existing and up-to-date state-of-the-art so-lution are reviewed, evaluated and key point advantages and disadvantages are analyzed. Conclusions are drawn at the end of the chapter. Chapter 2 describes theoretical analysis of wireless medium access protocols and the new wireless medium access method. During analysis theoretical simula-tions are performed. Conclusions are drawn at the end of the chapter. Chapter 3 is focused on the experimental components evaluation for multi-band system, which would be in line with theoretical concept investigations. The experimental results, showed that components of multi-band system can gain sig-nificant performance increase when compared to the existing IEEE 802.11n/ac wireless systems. General conclusions are drawn after analysis of measurement results

    Reconfigurable and traffic-aware MAC design for virtualized wireless networks via reinforcement learning

    Get PDF
    In this paper, we present a reconfigurable MAC scheme where the partition between contention-free and contention-based regimes in each frame is adaptive to the network status leveraging reinforcement learning. In particular, to support a virtualized wireless network consisting of multiple slices, each having heterogeneous and unsaturated devices, the proposed scheme aims to configure the partition for maximizing network throughput while maintaining the slice reservations. Applying complementary geometric programming (CGP) and monomial approximations, an iterative algorithm is developed to find the optimal solution. For a large number of devices, a scalable algorithm with lower computational complexity is also proposed. The partitioning algorithm requires the knowledge of the device traffic statistics. In the absence of such knowledge, we develop a learning algorithm employing Thompson sampling to acquire packet arrival probabilities of devices. Furthermore, we model the problem as a thresholding multi-armed bandit (TMAB) and propose a threshold-based reconfigurable MAC algorithm, which is proved to achieve the optimal regret bound

    Toward Open and Programmable Wireless Network Edge

    Get PDF
    Increasingly, the last hop connecting users to their enterprise and home networks is wireless. Wireless is becoming ubiquitous not only in homes and enterprises but in public venues such as coffee shops, hospitals, and airports. However, most of the publicly and privately available wireless networks are proprietary and closed in operation. Also, there is little effort from industries to move forward on a path to greater openness for the requirement of innovation. Therefore, we believe it is the domain of university researchers to enable innovation through openness. In this thesis work, we introduce and defines the importance of open framework in addressing the complexity of the wireless network. The Software Defined Network (SDN) framework has emerged as a popular solution for the data center network. However, the promise of the SDN framework is to make the network open, flexible and programmable. In order to deliver on the promise, SDN must work for all users and across all networks, both wired and wireless. Therefore, we proposed to create new modules and APIs to extend the standard SDN framework all the way to the end-devices (i.e., mobile devices, APs). Thus, we want to provide an extensible and programmable abstraction of the wireless network as part of the current SDN-based solution. In this thesis work, we design and develop a framework, weSDN (wireless extension of SDN), that extends the SDN control capability all the way to the end devices to support client-network interaction capabilities and new services. weSDN enables the control-plane of wireless networks to be extended to mobile devices and allows for top-level decisions to be made from an SDN controller with knowledge of the network as a whole, rather than device centric configurations. In addition, weSDN easily obtains user application information, as well as the ability to monitor and control application flows dynamically. Based on the weSDN framework, we demonstrate new services such as application-aware traffic management, WLAN virtualization, and security management
    corecore