2 research outputs found

    Learning-aided Stochastic Network Optimization with Imperfect State Prediction

    Full text link
    We investigate the problem of stochastic network optimization in the presence of imperfect state prediction and non-stationarity. Based on a novel distribution-accuracy curve prediction model, we develop the predictive learning-aided control (PLC) algorithm, which jointly utilizes historic and predicted network state information for decision making. PLC is an online algorithm that requires zero a-prior system statistical information, and consists of three key components, namely sequential distribution estimation and change detection, dual learning, and online queue-based control. Specifically, we show that PLC simultaneously achieves good long-term performance, short-term queue size reduction, accurate change detection, and fast algorithm convergence. In particular, for stationary networks, PLC achieves a near-optimal [O(Ο΅)[O(\epsilon), O(log⁑(1/Ο΅)2)]O(\log(1/\epsilon)^2)] utility-delay tradeoff. For non-stationary networks, \plc{} obtains an [O(Ο΅),O(log⁑2(1/Ο΅)[O(\epsilon), O(\log^2(1/\epsilon) +min⁑(Ο΅c/2βˆ’1,ew/Ο΅))]+ \min(\epsilon^{c/2-1}, e_w/\epsilon))] utility-backlog tradeoff for distributions that last Θ(max⁑(Ο΅βˆ’c,ewβˆ’2)Ο΅1+a)\Theta(\frac{\max(\epsilon^{-c}, e_w^{-2})}{\epsilon^{1+a}}) time, where ewe_w is the prediction accuracy and a=Θ(1)>0a=\Theta(1)>0 is a constant (the Backpressue algorithm \cite{neelynowbook} requires an O(Ο΅βˆ’2)O(\epsilon^{-2}) length for the same utility performance with a larger backlog). Moreover, PLC detects distribution change O(w)O(w) slots faster with high probability (ww is the prediction size) and achieves an O(min⁑(Ο΅βˆ’1+c/2,ew/Ο΅)+log⁑2(1/Ο΅))O(\min(\epsilon^{-1+c/2}, e_w/\epsilon)+\log^2(1/\epsilon)) convergence time. Our results demonstrate that state prediction (even imperfect) can help (i) achieve faster detection and convergence, and (ii) obtain better utility-delay tradeoffs

    Timely-Throughput Optimal Scheduling with Prediction

    Full text link
    Motivated by the increasing importance of providing delay-guaranteed services in general computing and communication systems, and the recent wide adoption of learning and prediction in network control, in this work, we consider a general stochastic single-server multi-user system and investigate the fundamental benefit of predictive scheduling in improving timely-throughput, being the rate of packets that are delivered to destinations before their deadlines. By adopting an error rate-based prediction model, we first derive a Markov decision process (MDP) solution to optimize the timely-throughput objective subject to an average resource consumption constraint. Based on a packet-level decomposition of the MDP, we explicitly characterize the optimal scheduling policy and rigorously quantify the timely-throughput improvement due to predictive-service, which scales as Θ(p[C1(aβˆ’amax⁑q)pβˆ’qρτ+C2(1βˆ’1p)](1βˆ’ΟD))\Theta(p\left[C_{1}\frac{(a-a_{\max}q)}{p-q}\rho^{\tau}+C_{2}(1-\frac{1}{p})\right](1-\rho^{D})), where a,amax⁑,ρ∈(0,1),C1>0,C2β‰₯0a, a_{\max}, \rho\in(0, 1), C_1>0, C_2\ge0 are constants, pp is the true-positive rate in prediction, qq is the false-negative rate, Ο„\tau is the packet deadline and DD is the prediction window size. We also conduct extensive simulations to validate our theoretical findings. Our results provide novel insights into how prediction and system parameters impact performance and provide useful guidelines for designing predictive low-latency control algorithms.Comment: 14 pages, 7 figure
    corecore