1,462,061 research outputs found
IPC: A Benchmark Data Set for Learning with Graph-Structured Data
Benchmark data sets are an indispensable ingredient of the evaluation of
graph-based machine learning methods. We release a new data set, compiled from
International Planning Competitions (IPC), for benchmarking graph
classification, regression, and related tasks. Apart from the graph
construction (based on AI planning problems) that is interesting in its own
right, the data set possesses distinctly different characteristics from
popularly used benchmarks. The data set, named IPC, consists of two
self-contained versions, grounded and lifted, both including graphs of large
and skewedly distributed sizes, posing substantial challenges for the
computation of graph models such as graph kernels and graph neural networks.
The graphs in this data set are directed and the lifted version is acyclic,
offering the opportunity of benchmarking specialized models for directed
(acyclic) structures. Moreover, the graph generator and the labeling are
computer programmed; thus, the data set may be extended easily if a larger
scale is desired. The data set is accessible from
\url{https://github.com/IBM/IPC-graph-data}.Comment: ICML 2019 Workshop on Learning and Reasoning with Graph-Structured
Data. The data set is accessible from https://github.com/IBM/IPC-graph-dat
Structured Sequence Modeling with Graph Convolutional Recurrent Networks
This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep
learning model able to predict structured sequences of data. Precisely, GCRN is
a generalization of classical recurrent neural networks (RNN) to data
structured by an arbitrary graph. Such structured sequences can represent
series of frames in videos, spatio-temporal measurements on a network of
sensors, or random walks on a vocabulary graph for natural language modeling.
The proposed model combines convolutional neural networks (CNN) on graphs to
identify spatial structures and RNN to find dynamic patterns. We study two
possible architectures of GCRN, and apply the models to two practical problems:
predicting moving MNIST data, and modeling natural language with the Penn
Treebank dataset. Experiments show that exploiting simultaneously graph spatial
and dynamic information about data can improve both precision and learning
speed
Efficient Multi-Template Learning for Structured Prediction
Conditional random field (CRF) and Structural Support Vector Machine
(Structural SVM) are two state-of-the-art methods for structured prediction
which captures the interdependencies among output variables. The success of
these methods is attributed to the fact that their discriminative models are
able to account for overlapping features on the whole input observations. These
features are usually generated by applying a given set of templates on labeled
data, but improper templates may lead to degraded performance. To alleviate
this issue, in this paper, we propose a novel multiple template learning
paradigm to learn structured prediction and the importance of each template
simultaneously, so that hundreds of arbitrary templates could be added into the
learning model without caution. This paradigm can be formulated as a special
multiple kernel learning problem with exponential number of constraints. Then
we introduce an efficient cutting plane algorithm to solve this problem in the
primal, and its convergence is presented. We also evaluate the proposed
learning paradigm on two widely-studied structured prediction tasks,
\emph{i.e.} sequence labeling and dependency parsing. Extensive experimental
results show that the proposed method outperforms CRFs and Structural SVMs due
to exploiting the importance of each template. Our complexity analysis and
empirical results also show that our proposed method is more efficient than
OnlineMKL on very sparse and high-dimensional data. We further extend this
paradigm for structured prediction using generalized -block norm
regularization with , and experiments show competitive performances when
- …
