57,775 research outputs found

    Geometric Learning with Positively Decomposable Kernels

    Full text link
    Kernel methods are powerful tools in machine learning. Classical kernel methods are based on positive-definite kernels, which map data spaces into reproducing kernel Hilbert spaces (RKHS). For non-Euclidean data spaces, positive-definite kernels are difficult to come by. In this case, we propose the use of reproducing kernel Krein space (RKKS) based methods, which require only kernels that admit a positive decomposition. We show that one does not need to access this decomposition in order to learn in RKKS. We then investigate the conditions under which a kernel is positively decomposable. We show that invariant kernels admit a positive decomposition on homogeneous spaces under tractable regularity assumptions. This makes them much easier to construct than positive-definite kernels, providing a route for learning with kernels for non-Euclidean data. By the same token, this provides theoretical foundations for RKKS-based methods in general

    Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning

    Get PDF
    For supervised and unsupervised learning, positive definite kernels allow to use large and potentially infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done through the penalization of predictor functions by Euclidean or Hilbertian norms. In this paper, we explore penalizing by sparsity-inducing norms such as the l1-norm or the block l1-norm. We assume that the kernel decomposes into a large sum of individual basis kernels which can be embedded in a directed acyclic graph; we show that it is then possible to perform kernel selection through a hierarchical multiple kernel learning framework, in polynomial time in the number of selected kernels. This framework is naturally applied to non linear variable selection; our extensive simulations on synthetic datasets and datasets from the UCI repository show that efficiently exploring the large feature space through sparsity-inducing norms leads to state-of-the-art predictive performance

    Regularized Regression Problem in hyper-RKHS for Learning Kernels

    Full text link
    This paper generalizes the two-stage kernel learning framework, illustrates its utility for kernel learning and out-of-sample extensions, and proves {asymptotic} convergence results for the introduced kernel learning model. Algorithmically, we extend target alignment by hyper-kernels in the two-stage kernel learning framework. The associated kernel learning task is formulated as a regression problem in a hyper-reproducing kernel Hilbert space (hyper-RKHS), i.e., learning on the space of kernels itself. To solve this problem, we present two regression models with bivariate forms in this space, including kernel ridge regression (KRR) and support vector regression (SVR) in the hyper-RKHS. By doing so, it provides significant model flexibility for kernel learning with outstanding performance in real-world applications. Specifically, our kernel learning framework is general, that is, the learned underlying kernel can be positive definite or indefinite, which adapts to various requirements in kernel learning. Theoretically, we study the convergence behavior of these learning algorithms in the hyper-RKHS and derive the learning rates. Different from the traditional approximation analysis in RKHS, our analyses need to consider the non-trivial independence of pairwise samples and the characterisation of hyper-RKHS. To the best of our knowledge, this is the first work in learning theory to study the approximation performance of regularized regression problem in hyper-RKHS.Comment: 25 pages, 3 figure

    Hypernode Graphs for Learning from Binary Relations between Groups in Networks

    Get PDF
    International audienceThe aim of this paper is to propose methods for learning from interactions between groups in networks. We introduced hypernode graphs in Ricatte et al (2014) a formal model able to represent group interactions and able to infer individual properties as well. Spectral graph learning algorithms were extended to the case of hypern-ode graphs. As a proof-of-concept, we have shown how to model multiple players games with hypernode graphs and that spectral learning algorithms over hyper-node graphs obtain competitive results with skill ratings specialized algorithms. In this paper, we explore theoretical issues for hypernode graphs. We show that hypernode graph kernels strictly generalize over graph kernels and hypergraph kernels. We show that hypernode graphs correspond to signed graphs such that the matrix D − W is positive semidefinite. It should be noted that homophilic relations between groups may lead to non homophilic relations between individ-uals. Moreover, we also present some issues concerning random walks and the resistance distance for hypernode graphs
    • …
    corecore