125,386 research outputs found

    Is Simple Better? Revisiting Non-linear Matrix Factorization for Learning Incomplete Ratings

    Full text link
    Matrix factorization techniques have been widely used as a method for collaborative filtering for recommender systems. In recent times, different variants of deep learning algorithms have been explored in this setting to improve the task of making a personalized recommendation with user-item interaction data. The idea that the mapping between the latent user or item factors and the original features is highly nonlinear suggest that classical matrix factorization techniques are no longer sufficient. In this paper, we propose a multilayer nonlinear semi-nonnegative matrix factorization method, with the motivation that user-item interactions can be modeled more accurately using a linear combination of non-linear item features. Firstly, we learn latent factors for representations of users and items from the designed multilayer nonlinear Semi-NMF approach using explicit ratings. Secondly, the architecture built is compared with deep-learning algorithms like Restricted Boltzmann Machine and state-of-the-art Deep Matrix factorization techniques. By using both supervised rate prediction task and unsupervised clustering in latent item space, we demonstrate that our proposed approach achieves better generalization ability in prediction as well as comparable representation ability as deep matrix factorization in the clustering task.Comment: version

    Generative Adversarial Networks for Mitigating Biases in Machine Learning Systems

    Full text link
    In this paper, we propose a new framework for mitigating biases in machine learning systems. The problem of the existing mitigation approaches is that they are model-oriented in the sense that they focus on tuning the training algorithms to produce fair results, while overlooking the fact that the training data can itself be the main reason for biased outcomes. Technically speaking, two essential limitations can be found in such model-based approaches: 1) the mitigation cannot be achieved without degrading the accuracy of the machine learning models, and 2) when the data used for training are largely biased, the training time automatically increases so as to find suitable learning parameters that help produce fair results. To address these shortcomings, we propose in this work a new framework that can largely mitigate the biases and discriminations in machine learning systems while at the same time enhancing the prediction accuracy of these systems. The proposed framework is based on conditional Generative Adversarial Networks (cGANs), which are used to generate new synthetic fair data with selective properties from the original data. We also propose a framework for analyzing data biases, which is important for understanding the amount and type of data that need to be synthetically sampled and labeled for each population group. Experimental results show that the proposed solution can efficiently mitigate different types of biases, while at the same time enhancing the prediction accuracy of the underlying machine learning model

    Structure fusion based on graph convolutional networks for semi-supervised classification

    Full text link
    Suffering from the multi-view data diversity and complexity for semi-supervised classification, most of existing graph convolutional networks focus on the networks architecture construction or the salient graph structure preservation, and ignore the the complete graph structure for semi-supervised classification contribution. To mine the more complete distribution structure from multi-view data with the consideration of the specificity and the commonality, we propose structure fusion based on graph convolutional networks (SF-GCN) for improving the performance of semi-supervised classification. SF-GCN can not only retain the special characteristic of each view data by spectral embedding, but also capture the common style of multi-view data by distance metric between multi-graph structures. Suppose the linear relationship between multi-graph structures, we can construct the optimization function of structure fusion model by balancing the specificity loss and the commonality loss. By solving this function, we can simultaneously obtain the fusion spectral embedding from the multi-view data and the fusion structure as adjacent matrix to input graph convolutional networks for semi-supervised classification. Experiments demonstrate that the performance of SF-GCN outperforms that of the state of the arts on three challenging datasets, which are Cora,Citeseer and Pubmed in citation networks
    corecore