37,365 research outputs found

    WESPE: Weakly Supervised Photo Enhancer for Digital Cameras

    Full text link
    Low-end and compact mobile cameras demonstrate limited photo quality mainly due to space, hardware and budget constraints. In this work, we propose a deep learning solution that translates photos taken by cameras with limited capabilities into DSLR-quality photos automatically. We tackle this problem by introducing a weakly supervised photo enhancer (WESPE) - a novel image-to-image Generative Adversarial Network-based architecture. The proposed model is trained by under weak supervision: unlike previous works, there is no need for strong supervision in the form of a large annotated dataset of aligned original/enhanced photo pairs. The sole requirement is two distinct datasets: one from the source camera, and one composed of arbitrary high-quality images that can be generally crawled from the Internet - the visual content they exhibit may be unrelated. Hence, our solution is repeatable for any camera: collecting the data and training can be achieved in a couple of hours. In this work, we emphasize on extensive evaluation of obtained results. Besides standard objective metrics and subjective user study, we train a virtual rater in the form of a separate CNN that mimics human raters on Flickr data and use this network to get reference scores for both original and enhanced photos. Our experiments on the DPED, KITTI and Cityscapes datasets as well as pictures from several generations of smartphones demonstrate that WESPE produces comparable or improved qualitative results with state-of-the-art strongly supervised methods

    DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks

    Full text link
    Despite a rapid rise in the quality of built-in smartphone cameras, their physical limitations - small sensor size, compact lenses and the lack of specific hardware, - impede them to achieve the quality results of DSLR cameras. In this work we present an end-to-end deep learning approach that bridges this gap by translating ordinary photos into DSLR-quality images. We propose learning the translation function using a residual convolutional neural network that improves both color rendition and image sharpness. Since the standard mean squared loss is not well suited for measuring perceptual image quality, we introduce a composite perceptual error function that combines content, color and texture losses. The first two losses are defined analytically, while the texture loss is learned in an adversarial fashion. We also present DPED, a large-scale dataset that consists of real photos captured from three different phones and one high-end reflex camera. Our quantitative and qualitative assessments reveal that the enhanced image quality is comparable to that of DSLR-taken photos, while the methodology is generalized to any type of digital camera

    EMPATH: A Neural Network that Categorizes Facial Expressions

    Get PDF
    There are two competing theories of facial expression recognition. Some researchers have suggested that it is an example of "categorical perception." In this view, expression categories are considered to be discrete entities with sharp boundaries, and discrimination of nearby pairs of expressive faces is enhanced near those boundaries. Other researchers, however, suggest that facial expression perception is more graded and that facial expressions are best thought of as points in a continuous, low-dimensional space, where, for instance, "surprise" expressions lie between "happiness" and "fear" expressions due to their perceptual similarity. In this article, we show that a simple yet biologically plausible neural network model, trained to classify facial expressions into six basic emotions, predicts data used to support both of these theories. Without any parameter tuning, the model matches a variety of psychological data on categorization, similarity, reaction times, discrimination, and recognition difficulty, both qualitatively and quantitatively. We thus explain many of the seemingly complex psychological phenomena related to facial expression perception as natural consequences of the tasks' implementations in the brain

    Beautiful and damned. Combined effect of content quality and social ties on user engagement

    Get PDF
    User participation in online communities is driven by the intertwinement of the social network structure with the crowd-generated content that flows along its links. These aspects are rarely explored jointly and at scale. By looking at how users generate and access pictures of varying beauty on Flickr, we investigate how the production of quality impacts the dynamics of online social systems. We develop a deep learning computer vision model to score images according to their aesthetic value and we validate its output through crowdsourcing. By applying it to over 15B Flickr photos, we study for the first time how image beauty is distributed over a large-scale social system. Beautiful images are evenly distributed in the network, although only a small core of people get social recognition for them. To study the impact of exposure to quality on user engagement, we set up matching experiments aimed at detecting causality from observational data. Exposure to beauty is double-edged: following people who produce high-quality content increases one's probability of uploading better photos; however, an excessive imbalance between the quality generated by a user and the user's neighbors leads to a decline in engagement. Our analysis has practical implications for improving link recommender systems.Comment: 13 pages, 12 figures, final version published in IEEE Transactions on Knowledge and Data Engineering (Volume: PP, Issue: 99

    On Face Segmentation, Face Swapping, and Face Perception

    Full text link
    We show that even when face images are unconstrained and arbitrarily paired, face swapping between them is actually quite simple. To this end, we make the following contributions. (a) Instead of tailoring systems for face segmentation, as others previously proposed, we show that a standard fully convolutional network (FCN) can achieve remarkably fast and accurate segmentations, provided that it is trained on a rich enough example set. For this purpose, we describe novel data collection and generation routines which provide challenging segmented face examples. (b) We use our segmentations to enable robust face swapping under unprecedented conditions. (c) Unlike previous work, our swapping is robust enough to allow for extensive quantitative tests. To this end, we use the Labeled Faces in the Wild (LFW) benchmark and measure the effect of intra- and inter-subject face swapping on recognition. We show that our intra-subject swapped faces remain as recognizable as their sources, testifying to the effectiveness of our method. In line with well known perceptual studies, we show that better face swapping produces less recognizable inter-subject results. This is the first time this effect was quantitatively demonstrated for machine vision systems
    • …
    corecore