8 research outputs found

    Speeding up heuristic computation in planning with Experience Graphs

    Full text link

    Human–Autonomy Teaming: Definitions, Debates, and Directions

    Get PDF
    Researchers are beginning to transition from studying human–automation interaction to human–autonomy teaming. This distinction has been highlighted in recent literature, and theoretical reasons why the psychological experience of humans interacting with autonomy may vary and affect subsequent collaboration outcomes are beginning to emerge (de Visser et al., 2018; Wynne and Lyons, 2018). In this review, we do a deep dive into human–autonomy teams (HATs) by explaining the differences between automation and autonomy and by reviewing the domain of human–human teaming to make inferences for HATs. We examine the domain of human–human teaming to extrapolate a few core factors that could have relevance for HATs. Notably, these factors involve critical social elements within teams that are central (as argued in this review) for HATs. We conclude by highlighting some research gaps that researchers should strive toward answering, which will ultimately facilitate a more nuanced and complete understanding of HATs in a variety of real-world contexts

    Robotic Trajectory Tracking: Position- and Force-Control

    Get PDF
    This thesis employs a bottom-up approach to develop robust and adaptive learning algorithms for trajectory tracking: position and torque control. In a first phase, the focus is put on the following of a freeform surface in a discontinuous manner. Next to resulting switching constraints, disturbances and uncertainties, the case of unknown robot models is addressed. In a second phase, once contact has been established between surface and end effector and the freeform path is followed, a desired force is applied. In order to react to changing circumstances, the manipulator needs to show the features of an intelligent agent, i.e. it needs to learn and adapt its behaviour based on a combination of a constant interaction with its environment and preprogramed goals or preferences. The robotic manipulator mimics the human behaviour based on bio-inspired algorithms. In this way it is taken advantage of the know-how and experience of human operators as their knowledge is translated in robot skills. A selection of promising concepts is explored, developed and combined to extend the application areas of robotic manipulators from monotonous, basic tasks in stiff environments to complex constrained processes. Conventional concepts (Sliding Mode Control, PID) are combined with bio-inspired learning (BELBIC, reinforcement based learning) for robust and adaptive control. Independence of robot parameters is guaranteed through approximated robot functions using a Neural Network with online update laws and model-free algorithms. The performance of the concepts is evaluated through simulations and experiments. In complex freeform trajectory tracking applications, excellent absolute mean position errors (<0.3 rad) are achieved. Position and torque control are combined in a parallel concept with minimized absolute mean torque errors (<0.1 Nm)

    Dynamic Grasp Adaptation:From Humans To Robots

    Get PDF
    The human hand is an amazing tool, demonstrated by its incredible motor capability and remarkable sense of touch. To enable robots to work in a human-centric environment, it is desirable to endow robotic hands with human-like capabilities for grasping and object manipulation. However, due to its inherent complexity and inevitable model uncertainty, robotic grasping and manipulation remains a challenge. This thesis focuses on grasp adaptation in the face of model and sensing uncertainties: Given an object whose properties are not known with certainty (e.g., shape, weight and external perturbation), and a multifingered robotic hand, we aim at determining where to put the fingers and how the fingers should adaptively interact with the object using tactile sensing, in order to achieve either a stable grasp or a desired dynamic behaviour. A central idea in this thesis is the object-centric dynamics: namely, that we express all control constraints into an object-centric representation. This simplifies computa- tion and makes the control versatile to the type of hands. This is an essential feature that distinguishes our work from other robust grasping work in the literature, where generating a static stable grasp for a given hand is usually the primary goal. In this thesis, grasp adaptation is a dynamic process that flexibly adapts the grasp to fit some purpose from the objectâs perspective, in the presence of a variety of uncertainties and/or perturbations. When building a grasp adaptation for a given situation, there are two key problems that must be addressed: 1) the problem of choosing an initial grasp that is suitable for future adaptation, and more importantly 2) the problem of design- ing an adaptation strategy that can react adequately to achieve desired behaviour of the grasped object. To address challenge 1 (planning a grasp under shape uncertainty), we propose an approach to parameterizing the uncertainty in object shape using Gaussian Processes (GPs) and incorporate it as a constraint into contact-level grasp planning. To realize the planned contacts using different hands interchangeably, we further develop a prob- abilistic model to predict the feasible hand configurations, including hand pose and finger joints, given the desired contact points only. The model is built using the con- cept of Virtual Frame(VF), and it is independent from the choice of hand frame and object frame. The performance of the proposed approach is validated on two differ- ent robotic hands, an industrial gripper (4 DOF Barrett hand) and a humanoid hand (16 DOF Allegro hand) to manipulate objects of daily use with complex geometry and various texture (a spray bottle, a tea caddy, a jug and a bunny toy). In the second part of this thesis, we propose an approach to the design of adapta- tion strategy to ensure grasp stability in the presence of physical uncertainties of objects(object weight, friction at contacts and external perturbation). Based on an object-level impedance controller, we first design a grasp stability estimator in the object frame using the grasp experience and tactile sensing. Once a grasp is predicted to be unstable during online execution, the grasp adaptation strategy is triggered to improve the grasp stability, by either changing the stiffness at finger level or relocating the position of one fingertip to a better area
    corecore