31 research outputs found

    Temporal Interpolation via Motion Field Prediction

    Full text link
    Navigated 2D multi-slice dynamic Magnetic Resonance (MR) imaging enables high contrast 4D MR imaging during free breathing and provides in-vivo observations for treatment planning and guidance. Navigator slices are vital for retrospective stacking of 2D data slices in this method. However, they also prolong the acquisition sessions. Temporal interpolation of navigator slices an be used to reduce the number of navigator acquisitions without degrading specificity in stacking. In this work, we propose a convolutional neural network (CNN) based method for temporal interpolation via motion field prediction. The proposed formulation incorporates the prior knowledge that a motion field underlies changes in the image intensities over time. Previous approaches that interpolate directly in the intensity space are prone to produce blurry images or even remove structures in the images. Our method avoids such problems and faithfully preserves the information in the image. Further, an important advantage of our formulation is that it provides an unsupervised estimation of bi-directional motion fields. We show that these motion fields can be used to halve the number of registrations required during 4D reconstruction, thus substantially reducing the reconstruction time.Comment: Submitted to 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherland

    Learning Temporal Transformations From Time-Lapse Videos

    Full text link
    Based on life-long observations of physical, chemical, and biologic phenomena in the natural world, humans can often easily picture in their minds what an object will look like in the future. But, what about computers? In this paper, we learn computational models of object transformations from time-lapse videos. In particular, we explore the use of generative models to create depictions of objects at future times. These models explore several different prediction tasks: generating a future state given a single depiction of an object, generating a future state given two depictions of an object at different times, and generating future states recursively in a recurrent framework. We provide both qualitative and quantitative evaluations of the generated results, and also conduct a human evaluation to compare variations of our models.Comment: ECCV201

    Theoretical Insights into the Use of Structural Similarity Index In Generative Models and Inferential Autoencoders

    Full text link
    Generative models and inferential autoencoders mostly make use of â„“2\ell_2 norm in their optimization objectives. In order to generate perceptually better images, this short paper theoretically discusses how to use Structural Similarity Index (SSIM) in generative models and inferential autoencoders. We first review SSIM, SSIM distance metrics, and SSIM kernel. We show that the SSIM kernel is a universal kernel and thus can be used in unconditional and conditional generated moment matching networks. Then, we explain how to use SSIM distance in variational and adversarial autoencoders and unconditional and conditional Generative Adversarial Networks (GANs). Finally, we propose to use SSIM distance rather than â„“2\ell_2 norm in least squares GAN.Comment: Accepted (to appear) in International Conference on Image Analysis and Recognition (ICIAR) 2020, Springe
    corecore