47 research outputs found

    Learning to Construct 3D Building Wireframes from 3D Line Clouds

    Full text link
    Line clouds, though under-investigated in the previous work, potentially encode more compact structural information of buildings than point clouds extracted from multi-view images. In this work, we propose the first network to process line clouds for building wireframe abstraction. The network takes a line cloud as input , i.e., a nonstructural and unordered set of 3D line segments extracted from multi-view images, and outputs a 3D wireframe of the underlying building, which consists of a sparse set of 3D junctions connected by line segments. We observe that a line patch, i.e., a group of neighboring line segments, encodes sufficient contour information to predict the existence and even the 3D position of a potential junction, as well as the likelihood of connectivity between two query junctions. We therefore introduce a two-layer Line-Patch Transformer to extract junctions and connectivities from sampled line patches to form a 3D building wireframe model. We also introduce a synthetic dataset of multi-view images with ground-truth 3D wireframe. We extensively justify that our reconstructed 3D wireframe models significantly improve upon multiple baseline building reconstruction methods. The code and data can be found at https://github.com/Luo1Cheng/LC2WF.Comment: 10 pages, 6 figure

    3D Room Layout Estimation from a Cubemap of Panorama Image via Deep Manhattan Hough Transform

    Full text link
    Significant geometric structures can be compactly described by global wireframes in the estimation of 3D room layout from a single panoramic image. Based on this observation, we present an alternative approach to estimate the walls in 3D space by modeling long-range geometric patterns in a learnable Hough Transform block. We transform the image feature from a cubemap tile to the Hough space of a Manhattan world and directly map the feature to the geometric output. The convolutional layers not only learn the local gradient-like line features, but also utilize the global information to successfully predict occluded walls with a simple network structure. Unlike most previous work, the predictions are performed individually on each cubemap tile, and then assembled to get the layout estimation. Experimental results show that we achieve comparable results with recent state-of-the-art in prediction accuracy and performance. Code is available at https://github.com/Starrah/DMH-Net.Comment: Accepted by ECCV 202

    Neural Wireframe Renderer: Learning Wireframe to Image Translations

    Full text link
    In architecture and computer-aided design, wireframes (i.e., line-based models) are widely used as basic 3D models for design evaluation and fast design iterations. However, unlike a full design file, a wireframe model lacks critical information, such as detailed shape, texture, and materials, needed by a conventional renderer to produce 2D renderings of the objects or scenes. In this paper, we bridge the information gap by generating photo-realistic rendering of indoor scenes from wireframe models in an image translation framework. While existing image synthesis methods can generate visually pleasing images for common objects such as faces and birds, these methods do not explicitly model and preserve essential structural constraints in a wireframe model, such as junctions, parallel lines, and planar surfaces. To this end, we propose a novel model based on a structure-appearance joint representation learned from both images and wireframes. In our model, structural constraints are explicitly enforced by learning a joint representation in a shared encoder network that must support the generation of both images and wireframes. Experiments on a wireframe-scene dataset show that our wireframe-to-image translation model significantly outperforms the state-of-the-art methods in both visual quality and structural integrity of generated images.Comment: ECCV 202

    Floor-SP: Inverse CAD for Floorplans by Sequential Room-wise Shortest Path

    Full text link
    This paper proposes a new approach for automated floorplan reconstruction from RGBD scans, a major milestone in indoor mapping research. The approach, dubbed Floor-SP, formulates a novel optimization problem, where room-wise coordinate descent sequentially solves dynamic programming to optimize the floorplan graph structure. The objective function consists of data terms guided by deep neural networks, consistency terms encouraging adjacent rooms to share corners and walls, and the model complexity term. The approach does not require corner/edge detection with thresholds, unlike most other methods. We have evaluated our system on production-quality RGBD scans of 527 apartments or houses, including many units with non-Manhattan structures. Qualitative and quantitative evaluations demonstrate a significant performance boost over the current state-of-the-art. Please refer to our project website http://jcchen.me/floor-sp/ for code and data.Comment: 10 pages, 9 figures, accepted to ICCV 201

    DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients

    Full text link
    Line segments are ubiquitous in our human-made world and are increasingly used in vision tasks. They are complementary to feature points thanks to their spatial extent and the structural information they provide. Traditional line detectors based on the image gradient are extremely fast and accurate, but lack robustness in noisy images and challenging conditions. Their learned counterparts are more repeatable and can handle challenging images, but at the cost of a lower accuracy and a bias towards wireframe lines. We propose to combine traditional and learned approaches to get the best of both worlds: an accurate and robust line detector that can be trained in the wild without ground truth lines. Our new line segment detector, DeepLSD, processes images with a deep network to generate a line attraction field, before converting it to a surrogate image gradient magnitude and angle, which is then fed to any existing handcrafted line detector. Additionally, we propose a new optimization tool to refine line segments based on the attraction field and vanishing points. This refinement improves the accuracy of current deep detectors by a large margin. We demonstrate the performance of our method on low-level line detection metrics, as well as on several downstream tasks using multiple challenging datasets. The source code and models are available at https://github.com/cvg/DeepLSD.Comment: Accepted at CVPR 202
    corecore