52,363 research outputs found

    Image-based Recommendations on Styles and Substitutes

    Full text link
    Humans inevitably develop a sense of the relationships between objects, some of which are based on their appearance. Some pairs of objects might be seen as being alternatives to each other (such as two pairs of jeans), while others may be seen as being complementary (such as a pair of jeans and a matching shirt). This information guides many of the choices that people make, from buying clothes to their interactions with each other. We seek here to model this human sense of the relationships between objects based on their appearance. Our approach is not based on fine-grained modeling of user annotations but rather on capturing the largest dataset possible and developing a scalable method for uncovering human notions of the visual relationships within. We cast this as a network inference problem defined on graphs of related images, and provide a large-scale dataset for the training and evaluation of the same. The system we develop is capable of recommending which clothes and accessories will go well together (and which will not), amongst a host of other applications.Comment: 11 pages, 10 figures, SIGIR 201

    A Generic Conceptual Model for Risk Analysis in a Multi-agent Based Collaborative Design Environment

    Get PDF
    Organised by: Cranfield UniversityThis paper presents a generic conceptual model of risk evaluation in order to manage the risk through related constraints and variables under a multi-agent collaborative design environment. Initially, a hierarchy constraint network is developed to mapping constraints and variables. Then, an effective approximation technique named Risk Assessment Matrix is adopted to evaluate risk level and rank priority after probability quantification and consequence validation. Additionally, an Intelligent Data based Reasoning Methodology is expanded to deal with risk mitigation by combining inductive learning methods and reasoning consistency algorithms with feasible solution strategies. Finally, two empirical studies were conducted to validate the effectiveness and feasibility of the conceptual model.Mori Seiki – The Machine Tool Compan

    Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

    Get PDF
    COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically

    Detecting Distracted Driving with Deep Learning

    Get PDF
    © Springer International Publishing AG 2017Driver distraction is the leading factor in most car crashes and near-crashes. This paper discusses the types, causes and impacts of distracted driving. A deep learning approach is then presented for the detection of such driving behaviors using images of the driver, where an enhancement has been made to a standard convolutional neural network (CNN). Experimental results on Kaggle challenge dataset have confirmed the capability of a convolutional neural network (CNN) in this complicated computer vision task and illustrated the contribution of the CNN enhancement to a better pattern recognition accuracy.Peer reviewe

    Together we stand, Together we fall, Together we win: Dynamic Team Formation in Massive Open Online Courses

    Full text link
    Massive Open Online Courses (MOOCs) offer a new scalable paradigm for e-learning by providing students with global exposure and opportunities for connecting and interacting with millions of people all around the world. Very often, students work as teams to effectively accomplish course related tasks. However, due to lack of face to face interaction, it becomes difficult for MOOC students to collaborate. Additionally, the instructor also faces challenges in manually organizing students into teams because students flock to these MOOCs in huge numbers. Thus, the proposed research is aimed at developing a robust methodology for dynamic team formation in MOOCs, the theoretical framework for which is grounded at the confluence of organizational team theory, social network analysis and machine learning. A prerequisite for such an undertaking is that we understand the fact that, each and every informal tie established among students offers the opportunities to influence and be influenced. Therefore, we aim to extract value from the inherent connectedness of students in the MOOC. These connections carry with them radical implications for the way students understand each other in the networked learning community. Our approach will enable course instructors to automatically group students in teams that have fairly balanced social connections with their peers, well defined in terms of appropriately selected qualitative and quantitative network metrics.Comment: In Proceedings of 5th IEEE International Conference on Application of Digital Information & Web Technologies (ICADIWT), India, February 2014 (6 pages, 3 figures
    • …
    corecore