4,325 research outputs found

    The relationship between environmental statistics and predictive gaze behaviour during a manual interception task: Eye movements as active inference

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. Data Availability: All relevant data and code is available online from: https://osf.io/tgx6r/.Human observers are known to frequently act like Bayes-optimal decision-makers. Growing evidence indicates that the deployment of the visual system may similarly be driven by probabilistic mental models of the environment. We tested whether eye movements during a dynamic interception task were indeed optimised according to Bayesian inference principles. Forty-one participants intercepted oncoming balls in a virtual reality racquetball task across five counterbalanced conditions in which the relative probability of the ball’s onset location was manipulated. Analysis of pre-onset gaze positions indicated that eye position tracked the true distribution of onset location, suggesting that the gaze system spontaneously adhered to environmental statistics. Eye movements did not, however, seek to minimise the distance between the target and foveal vision according to an optimal probabilistic model of the world and instead often reflected a ‘best guess’ about onset location. Trial-to-trial changes in gaze position were, however, found to be better explained by Bayesian learning models (hierarchical Gaussian filter) than associative learning models. Additionally, parameters relating to the precision of beliefs and prediction errors extracted from the participant-wise models were related to both task-evoked pupil dilations and variability in gaze positions, providing further evidence that probabilistic context was reflected in spontaneous gaze dynamics.Leverhulme Trus

    Ruthenium metallotherapeutics: a targeted approach to combatting multidrug resistant pathogens

    Get PDF
    The discovery of antibiotics revolutionised healthcare practice. However due to overuse, inappropriate use, widespread prophylaxis therapy and the lack of new developments, the threat of antimicrobial resistance is now a major global threat to health. By 2050, it is estimated that mortality due to antimicrobial resistant infections will exceed 10 million people per annum, superseding cancer as the leading cause of global mortality. The use of drug repurposing to identify potential therapies which combat antimicrobial resistance is one potential solution. Metals have been used as antimicrobial agents throughout the history of medicine for a broad range of applications, including the use of Silver as an antimicrobial agent which dates back to antiquity. More recently, Ruthenium metallotherapeutic complexes have been shown to exhibit highly active antimicrobial properties by targeting a range of bacterial species, and in contrast to traditional antibiotics, these compounds are thought to elicit antibacterial activity at multiple sites within the bacterial cell, which may reduce the possibility of resistance evolution. This study aimed to evaluate the antimicrobial activity of a series of Ruthenium metallotherapeutic complexes against multidrug-resistant bacterial pathogens, with a focus on use within wound care applications. Antimicrobial susceptibility assays identified two lead candidates, Hexaammineruthenium (III) chloride and [Chlorido(η6-p-cymene)(N-(4-chlorophenyl)pyridine-2-carbothioamide) ruthenium (II)] chloride which demonstrated activity against Pseudomonas aeruginosa and Staphylococcus aureus respectively with MIC values ranging between 4 Όg mL-1 and 16 Όg mL-1. Furthermore, Hexaammineruthenium (III) chloride demonstrated antibiofilm activity in both a time and concentration-dependent manner. Synergy studies combining lead complexes with antibiotics demonstrated the potential for use as resistance breakers. Subsequent in vitro infection modelling using scratch assays with skin cell lines, coupled with a 3D full thickness skin wound infection model was used to determine potential applied applications of Hexaammineruthenium (III) chloride for use as topical antimicrobial agent against P. aeruginosa infections. Antimicrobial mechanistic studies demonstrated that Hexaammineruthenium (III) chloride targeted the bacterial cell ultrastructure of P. aeruginosa strain PAO1 as cell perturbations were observed when treated cells were analysed by scanning electron microscopy. Furthermore, exposure of P. aeruginosa PAO1 to Hexaammineruthenium (III) chloride also resulted in a concentration dependent membrane depolarisation, which further supported the antimicrobial mechanistic role. Finally, global changes in gene expression following exposure of P. aeruginosa strain PAO1 to Hexaammineruthenium (III) chloride were explored by RNA sequencing. Genes involved in ribosome function, cofactor biosynthesis and membrane fusion were downregulated, which provided a further insight into the wider mechanisms of antibacterial activity. The research conducted in the present study indicated the potential use of Hexaammineruthenium (III) chloride (and derivatives) as a potential treatment option for chronic wounds infected with P. aeruginosa, which could be applied as either a direct treatment or used within antimicrobial wound care applications

    Neuroimaging investigations of cortical specialisation for different types of semantic knowledge

    Get PDF
    Embodied theories proposed that semantic knowledge is grounded in motor and perceptual experiences. This leads to two questions: (1) whether the neural underpinnings of perception are also necessary for semantic cognition; (2) how do biases towards different sensorimotor experiences cause brain regions to specialise for particular types of semantic information. This thesis tackles these questions in a series of neuroimaging and behavioural investigations. Regarding question 1, strong embodiment theory holds that semantic representation is reenactment of corresponding experiences, and brain regions for perception are necessary for comprehending modality-specific concepts. However, the weak embodiment view argues that reenactment may not be necessary, and areas near to perceiving regions may be sufficient to support semantic representation. In the particular case of motion concepts, lateral occipital temporal cortex (LOTC) has been long identified as an important area, but the roles of its different subregions are still uncertain. Chapter 3 examined how different parts of LOTC reacted to written descriptions of motion and static events, using multiple analysis methods. A series of anterior to posterior sub-regions were analyzed through univariate, multivariate pattern analysis (MVPA), and psychophysical interaction (PPI) analyses. MVPA revealed strongest decoding effects for motion vs. static events in the posterior parts of LOTC, including both visual motion area (V5) and posterior middle temporal gyrus (pMTG). In contrast, only the middle portion of LOTC showed increased activation for motion sentences in univariate analyses. PPI analyses showed increased functional connectivity between posterior LOTC and the multiple demand network for motion events. These findings suggest that posterior LOTC, which overlapped with the motion perception V5 region, is selectively involved in comprehending motion events, while the anterior part of LOTC contributes to general semantic processing. Regarding question 2, the hub-and-spoke theory suggests that anterior temporal lobe (ATL) acts as a hub, using inputs from modality-specific regions to construct multimodal concepts. However, some researchers propose temporal parietal cortex (TPC) as an additional hub, specialised in processing and integrating interaction and contextual information (e.g., for actions and locations). These hypotheses are summarized as the "dual-hub theory" and different aspects of this theory were investigated in in Chapters 4 and 5. Chapter 4 focuses on taxonomic and thematic relations. Taxonomic relations (or categorical relations) occur when two concepts belong to the same category (e.g., ‘dog’ and ‘wolf’ are both canines). In contrast, thematic relations (or associative relations) refer to situations that two concepts co-occur in events or scenes (e.g., ‘dog’ and ‘bone’), focusing on the interaction or association between concepts. Some studies have indicated ATL specialization for taxonomic relations and TPC specialization for thematic relations, but others have reported inconsistent or even converse results. Thus Chapter 4 first conducted an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies contrasting taxonomic and thematic relations. This found that thematic relations reliably engage action and location processing regions (left pMTG and SMG), while taxonomic relations only showed consistent effects in the right occipital lobe. A primed semantic judgement task was then used to test the dual-hub theory’s prediction that taxonomic relations are heavily reliant on colour and shape knowledge, while thematic relations rely on action and location knowledge. This behavioural experiment revealed that action or location priming facilitated thematic relation processing, but colour and shape did not lead to priming effects for taxonomic relations. This indicates that thematic relations rely more on action and location knowledge, which may explain why the preferentially engage TPC, whereas taxonomic relations are not specifically linked to shape and colour features. This may explain why they did not preferentially engage left ATL. Chapter 5 concentrates on event and object concepts. Previous studies suggest ATL specialization for coding similarity of objects’ semantics, and angular gyrus (AG) specialization for sentence and event structure representation. In addition, in neuroimaging studies, event semantics are usually investigated using complex temporally extended stimuli, unlike than the single-concept stimuli used to investigate object semantics. Thus chapter 5 used representational similarity analysis (RSA), univariate analysis, and PPI analysis to explore neural activation patterns for event and object concepts presented as static images. Bilateral AGs encoded semantic similarity for event concepts, with the left AG also coding object similarity. Bilateral ATLs encoded semantic similarity for object concepts but also for events. Left ATL exhibited stronger coding for events than objects. PPI analysis revealed stronger connections between left ATL and right pMTG, and between right AG and bilateral inferior temporal gyrus (ITG) and middle occipital gyrus, for event concepts compared to object concepts. Consistent with the meta-analysis in chapter 4, the results in chapter 5 support the idea of partial specialization in AG for event semantics but do not support ATL specialization for object semantics. In fact, both the meta-analysis and chapter 5 findings suggest greater ATL involvement in coding objects' associations compared to their similarity. To conclude, the thesis provides support for the idea that perceptual brain regions are engaged in conceptual processing, in the case of motion concepts. It also provides evidence for a specialised role for TPC regions in processing thematic relations (pMTG) and event concepts (AG). There was mixed evidence for specialisation within the ATLs and this remains an important target for future research

    Introduction to Psychology

    Get PDF
    Introduction to Psychology is a modified version of Psychology 2e - OpenStax

    How attention and knowledge modulate memory: The differential impact of cognitive conflicts on subsequent memory—A review of a decade of research

    Get PDF
    In order to cope with cognitive conflicts, attention and knowledge are required. In some conditions, cognitive conflicts can boost subsequent memory and in other conditions, they can attenuate subsequent memory. The goal of the present study is to provide a narrative review of studies from the last decade in which Stroop or flanker conflicts, task switching, perceptual disfluency or semantic incongruence were manipulated at study. We propose an integrative framework considering attentional mechanisms and knowledge structures. Attentional mechanisms can refer to conflict resolution, which is required to explain the memory benefit for incongruent stimuli in Stroop and Flanker paradigms. Attentional mechanisms can also refer to attention allocation, which is required to explain the memory cost for targets and the memory benefit for task-irrelevant distractors in task-switching paradigms. Moreover, attention allocation policies can also account for the inconsistent results for perceptual disfluency manipulations. Prior knowledge is required to explain effects of semantic congruency and incongruency: Information that is expected, or congruent with prior knowledge, is better remembered, namely by pre-existing schemata. Moreover, information that is unexpected or incongruent with prior knowledge attracts attention and is better remembered. The impact of prior knowledge on memory performance thus results in a U-shape function. We integrate the findings according to this framework and suggest directions for future research

    Influence of the environment on the early development of attentional control

    Get PDF
    The control of visual attention is key to learning and has a foundational role in the development of self-regulated behavior. Basic attention control skills emerge early in life and show a protracted development along childhood. Prior research suggests that attentional development is influenced by environmental factors in early and late childhood. Although, much less information is available about the impact of the early environment on emerging endogenous attention skills during infancy. In the current study we aimed to test the impact of parental socioeconomic status (SES) and home environment (chaos) in the emerging control of orienting in a sample of typically-developing infants. A group of 142 (73 female) 6-month-old infants were longitudinally tested at 6, 9 (n = 122; 60 female) and 16–18 (n = 91; 50 female) months of age using the gap-overlap paradigm. Median saccade latency (mdSL) and disengagement failure (DF) were computed as dependent variables for both overlap and gap conditions. Also, composite scores for a Disengagement Cost Index (DCI) and Disengagement Failure Index (DFI) were computed considering mdSL and DF of each condition, respectively. Families reported SES and chaos in the first and last follow-up sessions. Using Linear Mixed Models with Maximum Likelihood estimation (ML) we found a longitudinal decrease in mdSL in the gap but not in the overlap condition, while DF decreased with age independently of the experimental condition. Concerning early environmental factors, an SES index, parental occupation and chaos at 6 months were found to show a negative correlation with DFI at 16–18 months, although in the former case it was only marginally significant. Hierarchical regression models implementing ML showed that both SES and chaos at 6 months significantly predicted a lower DFI at 16–18 months. Results show a longitudinal progression of endogenous orienting between infancy and toddlerhood. With age, an increased endogenous control of orienting is displayed in contexts where visual disengagement is facilitated. Visual orienting involving attention disengagement in contexts of visual competition do not show changes with age. Moreover, these attentional mechanisms of endogenous control seem to be modulated by early experiences of the individual with the environment

    Data-Driven Evaluation of In-Vehicle Information Systems

    Get PDF
    Today’s In-Vehicle Information Systems (IVISs) are featurerich systems that provide the driver with numerous options for entertainment, information, comfort, and communication. Drivers can stream their favorite songs, read reviews of nearby restaurants, or change the ambient lighting to their liking. To do so, they interact with large center stack touchscreens that have become the main interface between the driver and IVISs. To interact with these systems, drivers must take their eyes off the road which can impair their driving performance. This makes IVIS evaluation critical not only to meet customer needs but also to ensure road safety. The growing number of features, the distraction caused by large touchscreens, and the impact of driving automation on driver behavior pose significant challenges for the design and evaluation of IVISs. Traditionally, IVISs are evaluated qualitatively or through small-scale user studies using driving simulators. However, these methods are not scalable to the growing number of features and the variety of driving scenarios that influence driver interaction behavior. We argue that data-driven methods can be a viable solution to these challenges and can assist automotive User Experience (UX) experts in evaluating IVISs. Therefore, we need to understand how data-driven methods can facilitate the design and evaluation of IVISs, how large amounts of usage data need to be visualized, and how drivers allocate their visual attention when interacting with center stack touchscreens. In Part I, we present the results of two empirical studies and create a comprehensive understanding of the role that data-driven methods currently play in the automotive UX design process. We found that automotive UX experts face two main conflicts: First, results from qualitative or small-scale empirical studies are often not valued in the decision-making process. Second, UX experts often do not have access to customer data and lack the means and tools to analyze it appropriately. As a result, design decisions are often not user-centered and are based on subjective judgments rather than evidence-based customer insights. Our results show that automotive UX experts need data-driven methods that leverage large amounts of telematics data collected from customer vehicles. They need tools to help them visualize and analyze customer usage data and computational methods to automatically evaluate IVIS designs. In Part II, we present ICEBOAT, an interactive user behavior analysis tool for automotive user interfaces. ICEBOAT processes interaction data, driving data, and glance data, collected over-the-air from customer vehicles and visualizes it on different levels of granularity. Leveraging our multi-level user behavior analysis framework, it enables UX experts to effectively and efficiently evaluate driver interactions with touchscreen-based IVISs concerning performance and safety-related metrics. In Part III, we investigate drivers’ multitasking behavior and visual attention allocation when interacting with center stack touchscreens while driving. We present the first naturalistic driving study to assess drivers’ tactical and operational self-regulation with center stack touchscreens. Our results show significant differences in drivers’ interaction and glance behavior in response to different levels of driving automation, vehicle speed, and road curvature. During automated driving, drivers perform more interactions per touchscreen sequence and increase the time spent looking at the center stack touchscreen. These results emphasize the importance of context-dependent driver distraction assessment of driver interactions with IVISs. Motivated by this we present a machine learning-based approach to predict and explain the visual demand of in-vehicle touchscreen interactions based on customer data. By predicting the visual demand of yet unseen touchscreen interactions, our method lays the foundation for automated data-driven evaluation of early-stage IVIS prototypes. The local and global explanations provide additional insights into how design artifacts and driving context affect drivers’ glance behavior. Overall, this thesis identifies current shortcomings in the evaluation of IVISs and proposes novel solutions based on visual analytics and statistical and computational modeling that generate insights into driver interaction behavior and assist UX experts in making user-centered design decisions

    Using a Game-Like Task as an Assessment of Concept Formation in Children

    Get PDF
    This study aimed to develop Pavitt’s (2017) newly developed game-based measure of concept formation and provide a practical scoring system for the Alien Game, with neurotypical children aged 8 to 11 years. Cross-sectional correlational design was used to compare the performance of participants on the Alien Game to established measures of concept formation (i.e., WISC-IV Similarities and Matrix Reasoning) and objective measure of executive function in everyday behaviour (i.e., Childhood Executive Function Inventory). Spearman’s rank correlations indicated that the Alien Game was found to be a valid measure of non-verbal abstract reasoning. There were no associations found between the objective measure of adaptive function. There were also no group differences found based on sex and language. The Game was rated highly enjoyable by participants, and suggestions were made regarding how the game could be developed further. Results suggest that the updated Alien Game has the potential to be a suitable measure of concept formation for young children. Future research could develop the Alien Game based on the ideas given by the participants, and aim to recruit a more diverse sample of children with varying abilities
    • 

    corecore