26 research outputs found

    Learning to Navigate the Energy Landscape

    Full text link
    In this paper, we present a novel and efficient architecture for addressing computer vision problems that use `Analysis by Synthesis'. Analysis by synthesis involves the minimization of the reconstruction error which is typically a non-convex function of the latent target variables. State-of-the-art methods adopt a hybrid scheme where discriminatively trained predictors like Random Forests or Convolutional Neural Networks are used to initialize local search algorithms. While these methods have been shown to produce promising results, they often get stuck in local optima. Our method goes beyond the conventional hybrid architecture by not only proposing multiple accurate initial solutions but by also defining a navigational structure over the solution space that can be used for extremely efficient gradient-free local search. We demonstrate the efficacy of our approach on the challenging problem of RGB Camera Relocalization. To make the RGB camera relocalization problem particularly challenging, we introduce a new dataset of 3D environments which are significantly larger than those found in other publicly-available datasets. Our experiments reveal that the proposed method is able to achieve state-of-the-art camera relocalization results. We also demonstrate the generalizability of our approach on Hand Pose Estimation and Image Retrieval tasks

    Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization

    Full text link
    Camera relocalization plays a vital role in many robotics and computer vision tasks, such as global localization, recovery from tracking failure and loop closure detection. Recent random forests based methods exploit randomly sampled pixel comparison features to predict 3D world locations for 2D image locations to guide the camera pose optimization. However, these image features are only sampled randomly in the images, without considering the spatial structures or geometric information, leading to large errors or failure cases with the existence of poorly textured areas or in motion blur. Line segment features are more robust in these environments. In this work, we propose to jointly exploit points and lines within the framework of uncertainty driven regression forests. The proposed approach is thoroughly evaluated on three publicly available datasets against several strong state-of-the-art baselines in terms of several different error metrics. Experimental results prove the efficacy of our method, showing superior or on-par state-of-the-art performance.Comment: published as a conference paper at 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Learning Less is More - 6D Camera Localization via 3D Surface Regression

    Full text link
    Popular research areas like autonomous driving and augmented reality have renewed the interest in image-based camera localization. In this work, we address the task of predicting the 6D camera pose from a single RGB image in a given 3D environment. With the advent of neural networks, previous works have either learned the entire camera localization process, or multiple components of a camera localization pipeline. Our key contribution is to demonstrate and explain that learning a single component of this pipeline is sufficient. This component is a fully convolutional neural network for densely regressing so-called scene coordinates, defining the correspondence between the input image and the 3D scene space. The neural network is prepended to a new end-to-end trainable pipeline. Our system is efficient, highly accurate, robust in training, and exhibits outstanding generalization capabilities. It exceeds state-of-the-art consistently on indoor and outdoor datasets. Interestingly, our approach surpasses existing techniques even without utilizing a 3D model of the scene during training, since the network is able to discover 3D scene geometry automatically, solely from single-view constraints.Comment: CVPR 201

    Matterport3D: Learning from RGB-D Data in Indoor Environments

    Full text link
    Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and region classification

    InLoc: Indoor Visual Localization with Dense Matching and View Synthesis

    Get PDF
    We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data

    Kpsnet: Keypoint Detection and Feature Extraction for Point Cloud Registration

    Full text link
    © 2019 IEEE. This paper presents the KPSNet, a KeyPoint Siamese Network to simultaneously learn task-desirable keypoint detector and feature extractor. The keypoint detector is optimized to predict a score vector, which signifies the probability of each candidate being a keypoint. The feature extractor is optimized to learn robust features of keypoints by exploiting the correspondence between the keypoints generated from two inputs, respectively. For training, the KPSNet does not require to manually annotate keypoints and local patches pairwise. Instead, we design an alignment module to establish the correspondence between the two inputs and generate positive and negative samples on-the-fly. Therefore, our method can be easily extended to new scenes. We test the proposed method on the open-source benchmark and experiments show the validity of our method

    Global Localization: Utilizing Relative Spatio-Temporal Geometric Constraints from Adjacent and Distant Cameras

    Full text link
    Re-localizing a camera from a single image in a previously mapped area is vital for many computer vision applications in robotics and augmented/virtual reality. In this work, we address the problem of estimating the 6 DoF camera pose relative to a global frame from a single image. We propose to leverage a novel network of relative spatial and temporal geometric constraints to guide the training of a Deep Network for localization. We employ simultaneously spatial and temporal relative pose constraints that are obtained not only from adjacent camera frames but also from camera frames that are distant in the spatio-temporal space of the scene. We show that our method, through these constraints, is capable of learning to localize when little or very sparse ground-truth 3D coordinates are available. In our experiments, this is less than 1% of available ground-truth data. We evaluate our method on 3 common visual localization datasets and show that it outperforms other direct pose estimation methods.Comment: To be published in the proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 202

    Distinctive 3D local deep descriptors

    Full text link
    We present a simple but yet effective method for learning distinctive 3D local deep descriptors (DIPs) that can be used to register point clouds without requiring an initial alignment. Point cloud patches are extracted, canonicalised with respect to their estimated local reference frame and encoded into rotation-invariant compact descriptors by a PointNet-based deep neural network. DIPs can effectively generalise across different sensor modalities because they are learnt end-to-end from locally and randomly sampled points. Because DIPs encode only local geometric information, they are robust to clutter, occlusions and missing regions. We evaluate and compare DIPs against alternative hand-crafted and deep descriptors on several indoor and outdoor datasets consisting of point clouds reconstructed using different sensors. Results show that DIPs (i) achieve comparable results to the state-of-the-art on RGB-D indoor scenes (3DMatch dataset), (ii) outperform state-of-the-art by a large margin on laser-scanner outdoor scenes (ETH dataset), and (iii) generalise to indoor scenes reconstructed with the Visual-SLAM system of Android ARCore. Source code: https://github.com/fabiopoiesi/dip.Comment: IEEE International Conference on Pattern Recognition 202
    corecore