137 research outputs found

    Learning to Estimate 3D Human Pose and Shape from a Single Color Image

    Full text link
    This work addresses the problem of estimating the full body 3D human pose and shape from a single color image. This is a task where iterative optimization-based solutions have typically prevailed, while Convolutional Networks (ConvNets) have suffered because of the lack of training data and their low resolution 3D predictions. Our work aims to bridge this gap and proposes an efficient and effective direct prediction method based on ConvNets. Central part to our approach is the incorporation of a parametric statistical body shape model (SMPL) within our end-to-end framework. This allows us to get very detailed 3D mesh results, while requiring estimation only of a small number of parameters, making it friendly for direct network prediction. Interestingly, we demonstrate that these parameters can be predicted reliably only from 2D keypoints and masks. These are typical outputs of generic 2D human analysis ConvNets, allowing us to relax the massive requirement that images with 3D shape ground truth are available for training. Simultaneously, by maintaining differentiability, at training time we generate the 3D mesh from the estimated parameters and optimize explicitly for the surface using a 3D per-vertex loss. Finally, a differentiable renderer is employed to project the 3D mesh to the image, which enables further refinement of the network, by optimizing for the consistency of the projection with 2D annotations (i.e., 2D keypoints or masks). The proposed approach outperforms previous baselines on this task and offers an attractive solution for direct prediction of 3D shape from a single color image.Comment: CVPR 2018 Camera Read

    Monocular Human Pose and Shape Reconstruction using Part Differentiable Rendering

    Full text link
    Superior human pose and shape reconstruction from monocular images depends on removing the ambiguities caused by occlusions and shape variance. Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth. However, 3D ground truth is neither in abundance nor can efficiently be obtained. In this paper, we introduce body part segmentation as critical supervision. Part segmentation not only indicates the shape of each body part but helps to infer the occlusions among parts as well. To improve the reconstruction with part segmentation, we propose a part-level differentiable renderer that enables part-based models to be supervised by part segmentation in neural networks or optimization loops. We also introduce a general parametric model engaged in the rendering pipeline as an intermediate representation between skeletons and detailed shapes, which consists of primitive geometries for better interpretability. The proposed approach combines parameter regression, body model optimization, and detailed model registration altogether. Experimental results demonstrate that the proposed method achieves balanced evaluation on pose and shape, and outperforms the state-of-the-art approaches on Human3.6M, UP-3D and LSP datasets.Comment: Accepted by Pacific Graphcis 202

    Analytical Derivatives for Differentiable Renderer: 3D Pose Estimation by Silhouette Consistency

    Full text link
    Differentiable render is widely used in optimization-based 3D reconstruction which requires gradients from differentiable operations for gradient-based optimization. The existing differentiable renderers obtain the gradients of rendering via numerical technique which is of low accuracy and efficiency. Motivated by this fact, a differentiable mesh renderer with analytical gradients is proposed. The main obstacle of rasterization based rendering being differentiable is the discrete sampling operation. To make the rasterization differentiable, the pixel intensity is defined as a double integral over the pixel area and the integral is approximated by anti-aliasing with an average filter. Then the analytical gradients with respect to the vertices coordinates can be derived from the continuous definition of pixel intensity. To demonstrate the effectiveness and efficiency of the proposed differentiable renderer, experiments of 3D pose estimation by only multi-viewpoint silhouettes were conducted. The experimental results show that 3D pose estimation without 3D and 2D joints supervision is capable of producing competitive results both qualitatively and quantitatively. The experimental results also show that the proposed differentiable renderer is of higher accuracy and efficiency compared with previous method of differentiable renderer.Comment: 19 pages, 8 figure

    Single Image 3D Hand Reconstruction with Mesh Convolutions

    Full text link
    Monocular 3D reconstruction of deformable objects, such as human body parts, has been typically approached by predicting parameters of heavyweight linear models. In this paper, we demonstrate an alternative solution that is based on the idea of encoding images into a latent non-linear representation of meshes. The prior on 3D hand shapes is learned by training an autoencoder with intrinsic graph convolutions performed in the spectral domain. The pre-trained decoder acts as a non-linear statistical deformable model. The latent parameters that reconstruct the shape and articulated pose of hands in the image are predicted using an image encoder. We show that our system reconstructs plausible meshes and operates in real-time. We evaluate the quality of the mesh reconstructions produced by the decoder on a new dataset and show latent space interpolation results. Our code, data, and models will be made publicly available.Comment: Proceedings of the British Machine Vision Conference (BMVC 2019

    3D Human Mesh Regression with Dense Correspondence

    Full text link
    Estimating 3D mesh of the human body from a single 2D image is an important task with many applications such as augmented reality and Human-Robot interaction. However, prior works reconstructed 3D mesh from global image feature extracted by using convolutional neural network (CNN), where the dense correspondences between the mesh surface and the image pixels are missing, leading to suboptimal solution. This paper proposes a model-free 3D human mesh estimation framework, named DecoMR, which explicitly establishes the dense correspondence between the mesh and the local image features in the UV space (i.e. a 2D space used for texture mapping of 3D mesh). DecoMR first predicts pixel-to-surface dense correspondence map (i.e., IUV image), with which we transfer local features from the image space to the UV space. Then the transferred local image features are processed in the UV space to regress a location map, which is well aligned with transferred features. Finally we reconstruct 3D human mesh from the regressed location map with a predefined mapping function. We also observe that the existing discontinuous UV map are unfriendly to the learning of network. Therefore, we propose a novel UV map that maintains most of the neighboring relations on the original mesh surface. Experiments demonstrate that our proposed local feature alignment and continuous UV map outperforms existing 3D mesh based methods on multiple public benchmarks. Code will be made available at https://github.com/zengwang430521/DecoMRComment: To appear at CVPR 202

    A Deep Learning Approach for Multi-View Engagement Estimation of Children in a Child-Robot Joint Attention task

    Full text link
    In this work we tackle the problem of child engagement estimation while children freely interact with a robot in their room. We propose a deep-based multi-view solution that takes advantage of recent developments in human pose detection. We extract the child's pose from different RGB-D cameras placed elegantly in the room, fuse the results and feed them to a deep neural network trained for classifying engagement levels. The deep network contains a recurrent layer, in order to exploit the rich temporal information contained in the pose data. The resulting method outperforms a number of baseline classifiers, and provides a promising tool for better automatic understanding of a child's attitude, interest and attention while cooperating with a robot. The goal is to integrate this model in next generation social robots as an attention monitoring tool during various CRI tasks both for Typically Developed (TD) children and children affected by autism (ASD).Comment: 7 pages, 6 figure

    Skeleton Transformer Networks: 3D Human Pose and Skinned Mesh from Single RGB Image

    Full text link
    In this paper, we present Skeleton Transformer Networks (SkeletonNet), an end-to-end framework that can predict not only 3D joint positions but also 3D angular pose (bone rotations) of a human skeleton from a single color image. This in turn allows us to generate skinned mesh animations. Here, we propose a two-step regression approach. The first step regresses bone rotations in order to obtain an initial solution by considering skeleton structure. The second step performs refinement based on heatmap regressor using a 3D pose representation called cross heatmap which stacks heatmaps of xy and zy coordinates. By training the network using the proposed 3D human pose dataset that is comprised of images annotated with 3D skeletal angular poses, we showed that SkeletonNet can predict a full 3D human pose (joint positions and bone rotations) from a single image in-the-wild.Comment: ACCV conferenc

    Detailed Human Shape Estimation from a Single Image by Hierarchical Mesh Deformation

    Full text link
    This paper presents a novel framework to recover detailed human body shapes from a single image. It is a challenging task due to factors such as variations in human shapes, body poses, and viewpoints. Prior methods typically attempt to recover the human body shape using a parametric based template that lacks the surface details. As such the resulting body shape appears to be without clothing. In this paper, we propose a novel learning-based framework that combines the robustness of parametric model with the flexibility of free-form 3D deformation. We use the deep neural networks to refine the 3D shape in a Hierarchical Mesh Deformation (HMD) framework, utilizing the constraints from body joints, silhouettes, and per-pixel shading information. We are able to restore detailed human body shapes beyond skinned models. Experiments demonstrate that our method has outperformed previous state-of-the-art approaches, achieving better accuracy in terms of both 2D IoU number and 3D metric distance. The code is available in https://github.com/zhuhao-nju/hmd.gitComment: CVPR 2019 Ora

    Self-Supervised Human Depth Estimation from Monocular Videos

    Full text link
    Previous methods on estimating detailed human depth often require supervised training with `ground truth' depth data. This paper presents a self-supervised method that can be trained on YouTube videos without known depth, which makes training data collection simple and improves the generalization of the learned network. The self-supervised learning is achieved by minimizing a photo-consistency loss, which is evaluated between a video frame and its neighboring frames warped according to the estimated depth and the 3D non-rigid motion of the human body. To solve this non-rigid motion, we first estimate a rough SMPL model at each video frame and compute the non-rigid body motion accordingly, which enables self-supervised learning on estimating the shape details. Experiments demonstrate that our method enjoys better generalization and performs much better on data in the wild.Comment: Accepted by IEEE Conference on Computer Vision and Patten Recognition (CVPR), 202

    Convolutional Mesh Regression for Single-Image Human Shape Reconstruction

    Full text link
    This paper addresses the problem of 3D human pose and shape estimation from a single image. Previous approaches consider a parametric model of the human body, SMPL, and attempt to regress the model parameters that give rise to a mesh consistent with image evidence. This parameter regression has been a very challenging task, with model-based approaches underperforming compared to nonparametric solutions in terms of pose estimation. In our work, we propose to relax this heavy reliance on the model's parameter space. We still retain the topology of the SMPL template mesh, but instead of predicting model parameters, we directly regress the 3D location of the mesh vertices. This is a heavy task for a typical network, but our key insight is that the regression becomes significantly easier using a Graph-CNN. This architecture allows us to explicitly encode the template mesh structure within the network and leverage the spatial locality the mesh has to offer. Image-based features are attached to the mesh vertices and the Graph-CNN is responsible to process them on the mesh structure, while the regression target for each vertex is its 3D location. Having recovered the complete 3D geometry of the mesh, if we still require a specific model parametrization, this can be reliably regressed from the vertices locations. We demonstrate the flexibility and the effectiveness of our proposed graph-based mesh regression by attaching different types of features on the mesh vertices. In all cases, we outperform the comparable baselines relying on model parameter regression, while we also achieve state-of-the-art results among model-based pose estimation approaches.Comment: To appear at CVPR 2019 (Oral Presentation). Project page: https://www.seas.upenn.edu/~nkolot/projects/cmr
    corecore