245,408 research outputs found

    Toward Optimal Feature Selection in Naive Bayes for Text Categorization

    Full text link
    Automated feature selection is important for text categorization to reduce the feature size and to speed up the learning process of classifiers. In this paper, we present a novel and efficient feature selection framework based on the Information Theory, which aims to rank the features with their discriminative capacity for classification. We first revisit two information measures: Kullback-Leibler divergence and Jeffreys divergence for binary hypothesis testing, and analyze their asymptotic properties relating to type I and type II errors of a Bayesian classifier. We then introduce a new divergence measure, called Jeffreys-Multi-Hypothesis (JMH) divergence, to measure multi-distribution divergence for multi-class classification. Based on the JMH-divergence, we develop two efficient feature selection methods, termed maximum discrimination (MDMD) and MD−χ2MD-\chi^2 methods, for text categorization. The promising results of extensive experiments demonstrate the effectiveness of the proposed approaches.Comment: This paper has been submitted to the IEEE Trans. Knowledge and Data Engineering. 14 pages, 5 figure

    Ensemble estimation of multivariate f-divergence

    Full text link
    f-divergence estimation is an important problem in the fields of information theory, machine learning, and statistics. While several divergence estimators exist, relatively few of their convergence rates are known. We derive the MSE convergence rate for a density plug-in estimator of f-divergence. Then by applying the theory of optimally weighted ensemble estimation, we derive a divergence estimator with a convergence rate of O(1/T) that is simple to implement and performs well in high dimensions. We validate our theoretical results with experiments.Comment: 14 pages, 6 figures, a condensed version of this paper was accepted to ISIT 2014, Version 2: Moved the proofs of the theorems from the main body to appendices at the en

    Multi-Source Neural Variational Inference

    Full text link
    Learning from multiple sources of information is an important problem in machine-learning research. The key challenges are learning representations and formulating inference methods that take into account the complementarity and redundancy of various information sources. In this paper we formulate a variational autoencoder based multi-source learning framework in which each encoder is conditioned on a different information source. This allows us to relate the sources via the shared latent variables by computing divergence measures between individual source's posterior approximations. We explore a variety of options to learn these encoders and to integrate the beliefs they compute into a consistent posterior approximation. We visualise learned beliefs on a toy dataset and evaluate our methods for learning shared representations and structured output prediction, showing trade-offs of learning separate encoders for each information source. Furthermore, we demonstrate how conflict detection and redundancy can increase robustness of inference in a multi-source setting.Comment: AAAI 2019, Association for the Advancement of Artificial Intelligence (AAAI) 201

    f-Divergence constrained policy improvement

    Full text link
    To ensure stability of learning, state-of-the-art generalized policy iteration algorithms augment the policy improvement step with a trust region constraint bounding the information loss. The size of the trust region is commonly determined by the Kullback-Leibler (KL) divergence, which not only captures the notion of distance well but also yields closed-form solutions. In this paper, we consider a more general class of f-divergences and derive the corresponding policy update rules. The generic solution is expressed through the derivative of the convex conjugate function to f and includes the KL solution as a special case. Within the class of f-divergences, we further focus on a one-parameter family of α\alpha-divergences to study effects of the choice of divergence on policy improvement. Previously known as well as new policy updates emerge for different values of α\alpha. We show that every type of policy update comes with a compatible policy evaluation resulting from the chosen f-divergence. Interestingly, the mean-squared Bellman error minimization is closely related to policy evaluation with the Pearson χ2\chi^2-divergence penalty, while the KL divergence results in the soft-max policy update and a log-sum-exp critic. We carry out asymptotic analysis of the solutions for different values of α\alpha and demonstrate the effects of using different divergence functions on a multi-armed bandit problem and on common standard reinforcement learning problems
    • …
    corecore