3,747 research outputs found

    Unsupervised state representation learning with robotic priors: a robustness benchmark

    Full text link
    Our understanding of the world depends highly on our capacity to produce intuitive and simplified representations which can be easily used to solve problems. We reproduce this simplification process using a neural network to build a low dimensional state representation of the world from images acquired by a robot. As in Jonschkowski et al. 2015, we learn in an unsupervised way using prior knowledge about the world as loss functions called robotic priors and extend this approach to high dimension richer images to learn a 3D representation of the hand position of a robot from RGB images. We propose a quantitative evaluation of the learned representation using nearest neighbors in the state space that allows to assess its quality and show both the potential and limitations of robotic priors in realistic environments. We augment image size, add distractors and domain randomization, all crucial components to achieve transfer learning to real robots. Finally, we also contribute a new prior to improve the robustness of the representation. The applications of such low dimensional state representation range from easing reinforcement learning (RL) and knowledge transfer across tasks, to facilitating learning from raw data with more efficient and compact high level representations. The results show that the robotic prior approach is able to extract high level representation as the 3D position of an arm and organize it into a compact and coherent space of states in a challenging dataset.Comment: ICRA 2018 submissio

    Deep unsupervised state representation learning with robotic priors: a robustness analysis

    Get PDF
    International audienceOur understanding of the world depends highly on our capacity to produce intuitive and simplified representations which can be easily used to solve problems. We reproduce this simplification process using a neural network to build a low dimensional state representation of the world from images acquired by a robot. As in Jonschkowski et al. 2015, we learn in an unsupervised way using prior knowledge about the world as loss functions called robotic priors and extend this approach to high dimension richer images to learn a 3D representation of the hand position of a robot from RGB images. We propose a quantitative evaluation metric of the learned representation that uses nearest neighbors in the state space and allows to assess its quality and show both the potential and limitations of robotic priors in realistic environments. We augment image size, add distractors and domain randomization, all crucial components to achieve transfer learning to real robots. Finally, we also contribute a new prior to improve the robustness of the representation. The applications of such low dimensional state representation range from easing reinforcement learning (RL) and knowledge transfer across tasks, to facilitating learning from raw data with more efficient and compact high level representations. The results show that the robotic prior approach is able to extract high level representation as the 3D position of an arm and organize it into a compact and coherent space of states in a challenging dataset

    Deep Object-Centric Representations for Generalizable Robot Learning

    Full text link
    Robotic manipulation in complex open-world scenarios requires both reliable physical manipulation skills and effective and generalizable perception. In this paper, we propose a method where general purpose pretrained visual models serve as an object-centric prior for the perception system of a learned policy. We devise an object-level attentional mechanism that can be used to determine relevant objects from a few trajectories or demonstrations, and then immediately incorporate those objects into a learned policy. A task-independent meta-attention locates possible objects in the scene, and a task-specific attention identifies which objects are predictive of the trajectories. The scope of the task-specific attention is easily adjusted by showing demonstrations with distractor objects or with diverse relevant objects. Our results indicate that this approach exhibits good generalization across object instances using very few samples, and can be used to learn a variety of manipulation tasks using reinforcement learning

    One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors

    Full text link
    One of the key challenges in applying reinforcement learning to complex robotic control tasks is the need to gather large amounts of experience in order to find an effective policy for the task at hand. Model-based reinforcement learning can achieve good sample efficiency, but requires the ability to learn a model of the dynamics that is good enough to learn an effective policy. In this work, we develop a model-based reinforcement learning algorithm that combines prior knowledge from previous tasks with online adaptation of the dynamics model. These two ingredients enable highly sample-efficient learning even in regimes where estimating the true dynamics is very difficult, since the online model adaptation allows the method to locally compensate for unmodeled variation in the dynamics. We encode the prior experience into a neural network dynamics model, adapt it online by progressively refitting a local linear model of the dynamics, and use model predictive control to plan under these dynamics. Our experimental results show that this approach can be used to solve a variety of complex robotic manipulation tasks in just a single attempt, using prior data from other manipulation behaviors

    Goal-Directed Planning for Habituated Agents by Active Inference Using a Variational Recurrent Neural Network

    Get PDF
    It is crucial to ask how agents can achieve goals by generating action plans using only partial models of the world acquired through habituated sensory-motor experiences. Although many existing robotics studies use a forward model framework, there are generalization issues with high degrees of freedom. The current study shows that the predictive coding (PC) and active inference (AIF) frameworks, which employ a generative model, can develop better generalization by learning a prior distribution in a low dimensional latent state space representing probabilistic structures extracted from well habituated sensory-motor trajectories. In our proposed model, learning is carried out by inferring optimal latent variables as well as synaptic weights for maximizing the evidence lower bound, while goal-directed planning is accomplished by inferring latent variables for maximizing the estimated lower bound. Our proposed model was evaluated with both simple and complex robotic tasks in simulation, which demonstrated sufficient generalization in learning with limited training data by setting an intermediate value for a regularization coefficient. Furthermore, comparative simulation results show that the proposed model outperforms a conventional forward model in goal-directed planning, due to the learned prior confining the search of motor plans within the range of habituated trajectories.Comment: 30 pages, 19 figure

    Robust Place Categorization With Deep Domain Generalization

    Get PDF
    Traditional place categorization approaches in robot vision assume that training and test images have similar visual appearance. Therefore, any seasonal, illumination, and environmental changes typically lead to severe degradation in performance. To cope with this problem, recent works have been proposed to adopt domain adaptation techniques. While effective, these methods assume that some prior information about the scenario where the robot will operate is available at training time. Unfortunately, in many cases, this assumption does not hold, as we often do not know where a robot will be deployed. To overcome this issue, in this paper, we present an approach that aims at learning classification models able to generalize to unseen scenarios. Specifically, we propose a novel deep learning framework for domain generalization. Our method develops from the intuition that, given a set of different classification models associated to known domains (e.g., corresponding to multiple environments, robots), the best model for a new sample in the novel domain can be computed directly at test time by optimally combining the known models. To implement our idea, we exploit recent advances in deep domain adaptation and design a convolutional neural network architecture with novel layers performing a weighted version of batch normalization. Our experiments, conducted on three common datasets for robot place categorization, confirm the validity of our contribution
    • …
    corecore