74,817 research outputs found

    Learning sparse representations of depth

    Full text link
    This paper introduces a new method for learning and inferring sparse representations of depth (disparity) maps. The proposed algorithm relaxes the usual assumption of the stationary noise model in sparse coding. This enables learning from data corrupted with spatially varying noise or uncertainty, typically obtained by laser range scanners or structured light depth cameras. Sparse representations are learned from the Middlebury database disparity maps and then exploited in a two-layer graphical model for inferring depth from stereo, by including a sparsity prior on the learned features. Since they capture higher-order dependencies in the depth structure, these priors can complement smoothness priors commonly used in depth inference based on Markov Random Field (MRF) models. Inference on the proposed graph is achieved using an alternating iterative optimization technique, where the first layer is solved using an existing MRF-based stereo matching algorithm, then held fixed as the second layer is solved using the proposed non-stationary sparse coding algorithm. This leads to a general method for improving solutions of state of the art MRF-based depth estimation algorithms. Our experimental results first show that depth inference using learned representations leads to state of the art denoising of depth maps obtained from laser range scanners and a time of flight camera. Furthermore, we show that adding sparse priors improves the results of two depth estimation methods: the classical graph cut algorithm by Boykov et al. and the more recent algorithm of Woodford et al.Comment: 12 page

    Using Sparse Semantic Embeddings Learned from Multimodal Text and Image Data to Model Human Conceptual Knowledge

    Get PDF
    Distributional models provide a convenient way to model semantics using dense embedding spaces derived from unsupervised learning algorithms. However, the dimensions of dense embedding spaces are not designed to resemble human semantic knowledge. Moreover, embeddings are often built from a single source of information (typically text data), even though neurocognitive research suggests that semantics is deeply linked to both language and perception. In this paper, we combine multimodal information from both text and image-based representations derived from state-of-the-art distributional models to produce sparse, interpretable vectors using Joint Non-Negative Sparse Embedding. Through in-depth analyses comparing these sparse models to human-derived behavioural and neuroimaging data, we demonstrate their ability to predict interpretable linguistic descriptions of human ground-truth semantic knowledge.Comment: Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 260-270. Brussels, Belgium, October 31 - November 1, 2018. Association for Computational Linguistic

    LRRU: Long-short Range Recurrent Updating Networks for Depth Completion

    Full text link
    Existing deep learning-based depth completion methods generally employ massive stacked layers to predict the dense depth map from sparse input data. Although such approaches greatly advance this task, their accompanied huge computational complexity hinders their practical applications. To accomplish depth completion more efficiently, we propose a novel lightweight deep network framework, the Long-short Range Recurrent Updating (LRRU) network. Without learning complex feature representations, LRRU first roughly fills the sparse input to obtain an initial dense depth map, and then iteratively updates it through learned spatially-variant kernels. Our iterative update process is content-adaptive and highly flexible, where the kernel weights are learned by jointly considering the guidance RGB images and the depth map to be updated, and large-to-small kernel scopes are dynamically adjusted to capture long-to-short range dependencies. Our initial depth map has coarse but complete scene depth information, which helps relieve the burden of directly regressing the dense depth from sparse ones, while our proposed method can effectively refine it to an accurate depth map with less learnable parameters and inference time. Experimental results demonstrate that our proposed LRRU variants achieve state-of-the-art performance across different parameter regimes. In particular, the LRRU-Base model outperforms competing approaches on the NYUv2 dataset, and ranks 1st on the KITTI depth completion benchmark at the time of submission. Project page: https://npucvr.github.io/LRRU/.Comment: Published in ICCV 202

    Towards Reliable Image Outpainting: Learning Structure-Aware Multimodal Fusion with Depth Guidance

    Full text link
    Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose a reliable image outpainting task, introducing the sparse depth from LiDARs to extrapolate authentic RGB scenes. The large field view of LiDARs allows it to serve for data enhancement and further multimodal tasks. Concretely, we propose a Depth-Guided Outpainting Network to model different feature representations of two modalities and learn the structure-aware cross-modal fusion. And two components are designed: 1) The Multimodal Learning Module produces unique depth and RGB feature representations from the perspectives of different modal characteristics. 2) The Depth Guidance Fusion Module leverages the complete depth modality to guide the establishment of RGB contents by progressive multimodal feature fusion. Furthermore, we specially design an additional constraint strategy consisting of Cross-modal Loss and Edge Loss to enhance ambiguous contours and expedite reliable content generation. Extensive experiments on KITTI and Waymo datasets demonstrate our superiority over the state-of-the-art method, quantitatively and qualitatively

    A Joint Intensity and Depth Co-Sparse Analysis Model for Depth Map Super-Resolution

    Full text link
    High-resolution depth maps can be inferred from low-resolution depth measurements and an additional high-resolution intensity image of the same scene. To that end, we introduce a bimodal co-sparse analysis model, which is able to capture the interdependency of registered intensity and depth information. This model is based on the assumption that the co-supports of corresponding bimodal image structures are aligned when computed by a suitable pair of analysis operators. No analytic form of such operators exist and we propose a method for learning them from a set of registered training signals. This learning process is done offline and returns a bimodal analysis operator that is universally applicable to natural scenes. We use this to exploit the bimodal co-sparse analysis model as a prior for solving inverse problems, which leads to an efficient algorithm for depth map super-resolution.Comment: 13 pages, 4 figure

    Sparse Coding on Stereo Video for Object Detection

    Get PDF
    Deep Convolutional Neural Networks (DCNN) require millions of labeled training examples for image classification and object detection tasks, which restrict these models to domains where such datasets are available. In this paper, we explore the use of unsupervised sparse coding applied to stereo-video data to help alleviate the need for large amounts of labeled data. We show that replacing a typical supervised convolutional layer with an unsupervised sparse-coding layer within a DCNN allows for better performance on a car detection task when only a limited number of labeled training examples is available. Furthermore, the network that incorporates sparse coding allows for more consistent performance over varying initializations and ordering of training examples when compared to a fully supervised DCNN. Finally, we compare activations between the unsupervised sparse-coding layer and the supervised convolutional layer, and show that the sparse representation exhibits an encoding that is depth selective, whereas encodings from the convolutional layer do not exhibit such selectivity. These result indicates promise for using unsupervised sparse-coding approaches in real-world computer vision tasks in domains with limited labeled training data
    • …
    corecore