10,517 research outputs found

    Joint Maximum Purity Forest with Application to Image Super-Resolution

    Full text link
    In this paper, we propose a novel random-forest scheme, namely Joint Maximum Purity Forest (JMPF), for classification, clustering, and regression tasks. In the JMPF scheme, the original feature space is transformed into a compactly pre-clustered feature space, via a trained rotation matrix. The rotation matrix is obtained through an iterative quantization process, where the input data belonging to different classes are clustered to the respective vertices of the new feature space with maximum purity. In the new feature space, orthogonal hyperplanes, which are employed at the split-nodes of decision trees in random forests, can tackle the clustering problems effectively. We evaluated our proposed method on public benchmark datasets for regression and classification tasks, and experiments showed that JMPF remarkably outperforms other state-of-the-art random-forest-based approaches. Furthermore, we applied JMPF to image super-resolution, because the transformed, compact features are more discriminative to the clustering-regression scheme. Experiment results on several public benchmark datasets also showed that the JMPF-based image super-resolution scheme is consistently superior to recent state-of-the-art image super-resolution algorithms.Comment: 18 pages, 7 figure

    Image Super-Resolution Using Deep Convolutional Networks

    Full text link
    We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.Comment: 14 pages, 14 figures, journa

    Ensemble Super-Resolution with A Reference Dataset

    Full text link
    By developing sophisticated image priors or designing deep(er) architectures, a variety of image Super-Resolution (SR) approaches have been proposed recently and achieved very promising performance. A natural question that arises is whether these methods can be reformulated into a unifying framework and whether this framework assists in SR reconstruction? In this paper, we present a simple but effective single image SR method based on ensemble learning, which can produce a better performance than that could be obtained from any of SR methods to be ensembled (or called component super-resolvers). Based on the assumption that better component super-resolver should have larger ensemble weight when performing SR reconstruction, we present a Maximum A Posteriori (MAP) estimation framework for the inference of optimal ensemble weights. Specially, we introduce a reference dataset, which is composed of High-Resolution (HR) and Low-Resolution (LR) image pairs, to measure the super-resolution abilities (prior knowledge) of different component super-resolvers. To obtain the optimal ensemble weights, we propose to incorporate the reconstruction constraint, which states that the degenerated HR image should be equal to the LR observation one, as well as the prior knowledge of ensemble weights into the MAP estimation framework. Moreover, the proposed optimization problem can be solved by an analytical solution. We study the performance of the proposed method by comparing with different competitive approaches, including four state-of-the-art non-deep learning based methods, four latest deep learning based methods and one ensemble learning based method, and prove its effectiveness and superiority on three public datasets.Comment: 14 pages, 11 figure

    A survey of sparse representation: algorithms and applications

    Full text link
    Sparse representation has attracted much attention from researchers in fields of signal processing, image processing, computer vision and pattern recognition. Sparse representation also has a good reputation in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. The main purpose of this article is to provide a comprehensive study and an updated review on sparse representation and to supply a guidance for researchers. The taxonomy of sparse representation methods can be studied from various viewpoints. For example, in terms of different norm minimizations used in sparsity constraints, the methods can be roughly categorized into five groups: sparse representation with l0l_0-norm minimization, sparse representation with lpl_p-norm (0<<p<<1) minimization, sparse representation with l1l_1-norm minimization and sparse representation with l2,1l_{2,1}-norm minimization. In this paper, a comprehensive overview of sparse representation is provided. The available sparse representation algorithms can also be empirically categorized into four groups: greedy strategy approximation, constrained optimization, proximity algorithm-based optimization, and homotopy algorithm-based sparse representation. The rationales of different algorithms in each category are analyzed and a wide range of sparse representation applications are summarized, which could sufficiently reveal the potential nature of the sparse representation theory. Specifically, an experimentally comparative study of these sparse representation algorithms was presented. The Matlab code used in this paper can be available at: http://www.yongxu.org/lunwen.html.Comment: Published on IEEE Access, Vol. 3, pp. 490-530, 201

    Single image super-resolution by approximated Heaviside functions

    Full text link
    Image super-resolution is a process to enhance image resolution. It is widely used in medical imaging, satellite imaging, target recognition, etc. In this paper, we conduct continuous modeling and assume that the unknown image intensity function is defined on a continuous domain and belongs to a space with a redundant basis. We propose a new iterative model for single image super-resolution based on an observation: an image is consisted of smooth components and non-smooth components, and we use two classes of approximated Heaviside functions (AHFs) to represent them respectively. Due to sparsity of the non-smooth components, a L1L_{1} model is employed. In addition, we apply the proposed iterative model to image patches to reduce computation and storage. Comparisons with some existing competitive methods show the effectiveness of the proposed method

    Face Hallucination using Linear Models of Coupled Sparse Support

    Full text link
    Most face super-resolution methods assume that low-resolution and high-resolution manifolds have similar local geometrical structure, hence learn local models on the lowresolution manifolds (e.g. sparse or locally linear embedding models), which are then applied on the high-resolution manifold. However, the low-resolution manifold is distorted by the oneto-many relationship between low- and high- resolution patches. This paper presents a method which learns linear models based on the local geometrical structure on the high-resolution manifold rather than on the low-resolution manifold. For this, in a first step, the low-resolution patch is used to derive a globally optimal estimate of the high-resolution patch. The approximated solution is shown to be close in Euclidean space to the ground-truth but is generally smooth and lacks the texture details needed by state-ofthe-art face recognizers. This first estimate allows us to find the support of the high-resolution manifold using sparse coding (SC), which are then used as support for learning a local projection (or upscaling) model between the low-resolution and the highresolution manifolds using Multivariate Ridge Regression (MRR). Experimental results show that the proposed method outperforms six face super-resolution methods in terms of both recognition and quality. These results also reveal that the recognition and quality are significantly affected by the method used for stitching all super-resolved patches together, where quilting was found to better preserve the texture details which helps to achieve higher recognition rates

    Image Super-Resolution via Sparse Bayesian Modeling of Natural Images

    Full text link
    Image super-resolution (SR) is one of the long-standing and active topics in image processing community. A large body of works for image super resolution formulate the problem with Bayesian modeling techniques and then obtain its Maximum-A-Posteriori (MAP) solution, which actually boils down to a regularized regression task over separable regularization term. Although straightforward, this approach cannot exploit the full potential offered by the probabilistic modeling, as only the posterior mode is sought. Also, the separable property of the regularization term can not capture any correlations between the sparse coefficients, which sacrifices much on its modeling accuracy. We propose a Bayesian image SR algorithm via sparse modeling of natural images. The sparsity property of the latent high resolution image is exploited by introducing latent variables into the high-order Markov Random Field (MRF) which capture the content adaptive variance by pixel-wise adaptation. The high-resolution image is estimated via Empirical Bayesian estimation scheme, which is substantially faster than our previous approach based on Markov Chain Monte Carlo sampling [1]. It is shown that the actual cost function for the proposed approach actually incorporates a non-factorial regularization term over the sparse coefficients. Experimental results indicate that the proposed method can generate competitive or better results than \emph{state-of-the-art} SR algorithms.Comment: 8 figures, 29 page

    EDIZ: An Error Diffusion Image Zooming Scheme

    Full text link
    Interpolation based image zooming methods provide a high execution speed and low computational complexity. However, the quality of the zoomed images is unsatisfactory in many cases. The main challenge of super- resolution methods is to create new details to the image. This paper proposes a new algorithm to create new details using a zoom-out-zoom-in strategy. This strategy permits reducing blurring effects by adding the estimated error to the final image. Experimental results for natural images confirm the algorithm's ability to create visually pleasing results.Comment: Submitted to IEEE Signal Processing Letter

    Face Recognition in Low Quality Images: A Survey

    Full text link
    Low-resolution face recognition (LRFR) has received increasing attention over the past few years. Its applications lie widely in the real-world environment when high-resolution or high-quality images are hard to capture. One of the biggest demands for LRFR technologies is video surveillance. As the the number of surveillance cameras in the city increases, the videos that captured will need to be processed automatically. However, those videos or images are usually captured with large standoffs, arbitrary illumination condition, and diverse angles of view. Faces in these images are generally small in size. Several studies addressed this problem employed techniques like super resolution, deblurring, or learning a relationship between different resolution domains. In this paper, we provide a comprehensive review of approaches to low-resolution face recognition in the past five years. First, a general problem definition is given. Later, systematically analysis of the works on this topic is presented by catogory. In addition to describing the methods, we also focus on datasets and experiment settings. We further address the related works on unconstrained low-resolution face recognition and compare them with the result that use synthetic low-resolution data. Finally, we summarized the general limitations and speculate a priorities for the future effort.Comment: There are some mistakes addressing in this paper which will be misleading to the reader and we wont have a new version in short time. We will resubmit once it is being corecte

    Selective Image Super-Resolution

    Full text link
    In this paper we propose a vision system that performs image Super Resolution (SR) with selectivity. Conventional SR techniques, either by multi-image fusion or example-based construction, have failed to capitalize on the intrinsic structural and semantic context in the image, and performed "blind" resolution recovery to the entire image area. By comparison, we advocate example-based selective SR whereby selectivity is exemplified in three aspects: region selectivity (SR only at object regions), source selectivity (object SR with trained object dictionaries), and refinement selectivity (object boundaries refinement using matting). The proposed system takes over-segmented low-resolution images as inputs, assimilates recent learning techniques of sparse coding (SC) and grouped multi-task lasso (GMTL), and leads eventually to a framework for joint figure-ground separation and interest object SR. The efficiency of our framework is manifested in our experiments with subsets of the VOC2009 and MSRC datasets. We also demonstrate several interesting vision applications that can build on our system.Comment: 20 pages, 5 figures. Submitted to Computer Vision and Image Understanding in March 2010. Keywords: image super resolution, semantic image segmentation, vision system, vision applicatio
    • …
    corecore