1,293 research outputs found

    Top-N Recommendation on Graphs

    Full text link
    Recommender systems play an increasingly important role in online applications to help users find what they need or prefer. Collaborative filtering algorithms that generate predictions by analyzing the user-item rating matrix perform poorly when the matrix is sparse. To alleviate this problem, this paper proposes a simple recommendation algorithm that fully exploits the similarity information among users and items and intrinsic structural information of the user-item matrix. The proposed method constructs a new representation which preserves affinity and structure information in the user-item rating matrix and then performs recommendation task. To capture proximity information about users and items, two graphs are constructed. Manifold learning idea is used to constrain the new representation to be smooth on these graphs, so as to enforce users and item proximities. Our model is formulated as a convex optimization problem, for which we need to solve the well-known Sylvester equation only. We carry out extensive empirical evaluations on six benchmark datasets to show the effectiveness of this approach.Comment: CIKM 201

    Using Posters to Recommend Anime and Mangas in a Cold-Start Scenario

    Full text link
    Item cold-start is a classical issue in recommender systems that affects anime and manga recommendations as well. This problem can be framed as follows: how to predict whether a user will like a manga that received few ratings from the community? Content-based techniques can alleviate this issue but require extra information, that is usually expensive to gather. In this paper, we use a deep learning technique, Illustration2Vec, to easily extract tag information from the manga and anime posters (e.g., sword, or ponytail). We propose BALSE (Blended Alternate Least Squares with Explanation), a new model for collaborative filtering, that benefits from this extra information to recommend mangas. We show, using real data from an online manga recommender system called Mangaki, that our model improves substantially the quality of recommendations, especially for less-known manga, and is able to provide an interpretation of the taste of the users.Comment: 6 pages, 3 figures, 1 table, accepted at the MANPU 2017 workshop, co-located with ICDAR 2017 in Kyoto on November 10, 201

    NAIS: Neural Attentive Item Similarity Model for Recommendation

    Full text link
    Item-to-item collaborative filtering (aka. item-based CF) has been long used for building recommender systems in industrial settings, owing to its interpretability and efficiency in real-time personalization. It builds a user's profile as her historically interacted items, recommending new items that are similar to the user's profile. As such, the key to an item-based CF method is in the estimation of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM), our NAIS has stronger representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based CF, opening up new research possibilities for future developments of neural recommender systems
    corecore