14,253 research outputs found

    Learning midlevel image features for natural scene and texture classification

    Get PDF
    This paper deals with coding of natural scenes in order to extract semantic information. We present a new scheme to project natural scenes onto a basis in which each dimension encodes statistically independent information. Basis extraction is performed by independent component analysis (ICA) applied to image patches culled from natural scenes. The study of the resulting coding units (coding filters) extracted from well-chosen categories of images shows that they adapt and respond selectively to discriminant features in natural scenes. Given this basis, we define global and local image signatures relying on the maximal activity of filters on the input image. Locally, the construction of the signature takes into account the spatial distribution of the maximal responses within the image. We propose a criterion to reduce the size of the space of representation for faster computation. The proposed approach is tested in the context of texture classification (111 classes), as well as natural scenes classification (11 categories, 2037 images). Using a common protocol, the other commonly used descriptors have at most 47.7% accuracy on average while our method obtains performances of up to 63.8%. We show that this advantage does not depend on the size of the signature and demonstrate the efficiency of the proposed criterion to select ICA filters and reduce the dimensio

    Texture Segregation By Visual Cortex: Perceptual Grouping, Attention, and Learning

    Get PDF
    A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Oriented Response Networks

    Full text link
    Deep Convolution Neural Networks (DCNNs) are capable of learning unprecedentedly effective image representations. However, their ability in handling significant local and global image rotations remains limited. In this paper, we propose Active Rotating Filters (ARFs) that actively rotate during convolution and produce feature maps with location and orientation explicitly encoded. An ARF acts as a virtual filter bank containing the filter itself and its multiple unmaterialised rotated versions. During back-propagation, an ARF is collectively updated using errors from all its rotated versions. DCNNs using ARFs, referred to as Oriented Response Networks (ORNs), can produce within-class rotation-invariant deep features while maintaining inter-class discrimination for classification tasks. The oriented response produced by ORNs can also be used for image and object orientation estimation tasks. Over multiple state-of-the-art DCNN architectures, such as VGG, ResNet, and STN, we consistently observe that replacing regular filters with the proposed ARFs leads to significant reduction in the number of network parameters and improvement in classification performance. We report the best results on several commonly used benchmarks.Comment: Accepted in CVPR 2017. Source code available at http://yzhou.work/OR

    On Using Backpropagation for Speech Texture Generation and Voice Conversion

    Full text link
    Inspired by recent work on neural network image generation which rely on backpropagation towards the network inputs, we present a proof-of-concept system for speech texture synthesis and voice conversion based on two mechanisms: approximate inversion of the representation learned by a speech recognition neural network, and on matching statistics of neuron activations between different source and target utterances. Similar to image texture synthesis and neural style transfer, the system works by optimizing a cost function with respect to the input waveform samples. To this end we use a differentiable mel-filterbank feature extraction pipeline and train a convolutional CTC speech recognition network. Our system is able to extract speaker characteristics from very limited amounts of target speaker data, as little as a few seconds, and can be used to generate realistic speech babble or reconstruct an utterance in a different voice.Comment: Accepted to ICASSP 201

    A survey of exemplar-based texture synthesis

    Full text link
    Exemplar-based texture synthesis is the process of generating, from an input sample, new texture images of arbitrary size and which are perceptually equivalent to the sample. The two main approaches are statistics-based methods and patch re-arrangement methods. In the first class, a texture is characterized by a statistical signature; then, a random sampling conditioned to this signature produces genuinely different texture images. The second class boils down to a clever "copy-paste" procedure, which stitches together large regions of the sample. Hybrid methods try to combine ideas from both approaches to avoid their hurdles. The recent approaches using convolutional neural networks fit to this classification, some being statistical and others performing patch re-arrangement in the feature space. They produce impressive synthesis on various kinds of textures. Nevertheless, we found that most real textures are organized at multiple scales, with global structures revealed at coarse scales and highly varying details at finer ones. Thus, when confronted with large natural images of textures the results of state-of-the-art methods degrade rapidly, and the problem of modeling them remains wide open.Comment: v2: Added comments and typos fixes. New section added to describe FRAME. New method presented: CNNMR
    • 

    corecore