3 research outputs found

    Adversarial Partial Multi-Label Learning

    Full text link
    Partial multi-label learning (PML), which tackles the problem of learning multi-label prediction models from instances with overcomplete noisy annotations, has recently started gaining attention from the research community. In this paper, we propose a novel adversarial learning model, PML-GAN, under a generalized encoder-decoder framework for partial multi-label learning. The PML-GAN model uses a disambiguation network to identify noisy labels and uses a multi-label prediction network to map the training instances to the disambiguated label vectors, while deploying a generative adversarial network as an inverse mapping from label vectors to data samples in the input feature space. The learning of the overall model corresponds to a minimax adversarial game, which enhances the correspondence of input features with the output labels in a bi-directional mapping. Extensive experiments are conducted on multiple datasets, while the proposed model demonstrates the state-of-the-art performance for partial multi-label learning

    Weakly Supervised Learning Meets Ride-Sharing User Experience Enhancement

    Full text link
    Weakly supervised learning aims at coping with scarce labeled data. Previous weakly supervised studies typically assume that there is only one kind of weak supervision in data. In many applications, however, raw data usually contains more than one kind of weak supervision at the same time. For example, in user experience enhancement from Didi, one of the largest online ride-sharing platforms, the ride comment data contains severe label noise (due to the subjective factors of passengers) and severe label distribution bias (due to the sampling bias). We call such a problem as "compound weakly supervised learning". In this paper, we propose the CWSL method to address this problem based on Didi ride-sharing comment data. Specifically, an instance reweighting strategy is employed to cope with severe label noise in comment data, where the weights for harmful noisy instances are small. Robust criteria like AUC rather than accuracy and the validation performance are optimized for the correction of biased data label. Alternating optimization and stochastic gradient methods accelerate the optimization on large-scale data. Experiments on Didi ride-sharing comment data clearly validate the effectiveness. We hope this work may shed some light on applying weakly supervised learning to complex real situations.Comment: AAAI 202

    A Multisite, Report-Based, Centralized Infrastructure for Feedback and Monitoring of Radiology AI/ML Development and Clinical Deployment

    Full text link
    An infrastructure for multisite, geographically-distributed creation and collection of diverse, high-quality, curated and labeled radiology image data is crucial for the successful automated development, deployment, monitoring and continuous improvement of Artificial Intelligence (AI)/Machine Learning (ML) solutions in the real world. An interactive radiology reporting approach that integrates image viewing, dictation, natural language processing (NLP) and creation of hyperlinks between image findings and the report, provides localized labels during routine interpretation. These images and labels can be captured and centralized in a cloud-based system. This method provides a practical and efficient mechanism with which to monitor algorithm performance. It also supplies feedback for iterative development and quality improvement of new and existing algorithmic models. Both feedback and monitoring are achieved without burdening the radiologist. The method addresses proposed regulatory requirements for post-marketing surveillance and external data. Comprehensive multi-site data collection assists in reducing bias. Resource requirements are greatly reduced compared to dedicated retrospective expert labeling.Comment: 21 pages, 3 figure
    corecore