11 research outputs found

    ΠœΠ΅Ρ‚ΠΎΠ΄ формирования Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ процСсса пСрСмСщСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π° основС объСдинСния систСм Π·Π°Ρ…Π²Π°Ρ‚Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ

    Get PDF
    The article deals with the problem of forming a digital shadow of the process of moving a person. An analysis of the subject area was carried out, which showed the need to formalize the process of creating digital shadows to simulate human movements in virtual space, testing software and hardware systems that operate on the basis of human actions, as well as in various systems of musculoskeletal rehabilitation. It was revealed that among the existing approaches to the capture of human movements, it is impossible to single out a universal and stable method under various environmental conditions. A method for forming a digital shadow has been developed based on combining and synchronizing data from three motion capture systems (virtual reality trackers, a motion capture suit, and cameras using computer vision technologies). Combining the above systems makes it possible to obtain a comprehensive assessment of the position and condition of a person regardless of environmental conditions (electromagnetic interference, illumination). To implement the proposed method, a formalization of the digital shadow of the human movement process was carried out, including a description of the mechanisms for collecting and processing data from various motion capture systems, as well as the stages of combining, filtering, and synchronizing data. The scientific novelty of the method lies in the formalization of the process of collecting data on the movement of a person, combining and synchronizing the hardware of the motion capture systems to create digital shadows of the process of moving a person. The obtained theoretical results will be used as a basis for software abstraction of a digital shadow in information systems to solve the problems of testing, simulating a person, and modeling his reaction to external stimuli by generalizing the collected data arrays about his movement.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Π·Π°Π΄Π°Ρ‡Π° формирования Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ процСсса пСрСмСщСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎΠΉ области, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса создания Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π½Π΅ΠΉ для ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² Π²ΠΈΡ€Ρ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΌ пространствС, тСстировании ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½Ρ‹Ρ… комплСксов, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π½Π° основС дСйствий Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… систСмах ΠΎΠΏΠΎΡ€Π½ΠΎ-Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΈ. ВыявлСно, Ρ‡Ρ‚ΠΎ срСди ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ Π·Π°Ρ…Π²Π°Ρ‚Ρƒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° нСльзя Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠΉ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях внСшнСй срСды. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ формирования Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ Π½Π° основС комбинирования ΠΈ синхронизации Π΄Π°Π½Π½Ρ‹Ρ… ΠΈΠ· Ρ‚Ρ€Π΅Ρ… систСм Π·Π°Ρ…Π²Π°Ρ‚Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ (Ρ‚Ρ€Π΅ΠΊΠ΅Ρ€Ρ‹ Π²ΠΈΡ€Ρ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΠΊΠΎΡΡ‚ΡŽΠΌ motion capture ΠΈ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ с использованиСм Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ зрСния). ОбъСдинСниС пСрСчислСнных систСм позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ полоТСния ΠΈ состояния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° нСзависимо ΠΎΡ‚ условий внСшнСй срСды (элСктромагнитныС ΠΏΠΎΠΌΠ΅Ρ…ΠΈ, ΠΎΡΠ²Π΅Ρ‰Π΅Π½Π½ΠΎΡΡ‚ΡŒ). Для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° формализация Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ процСсса пСрСмСщСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ описаниС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² сбора ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… систСм Π·Π°Ρ…Π²Π°Ρ‚Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ этапы объСдинСния, Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ синхронизации Π΄Π°Π½Π½Ρ‹Ρ…. Научная Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса сбора Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, объСдинСнии ΠΈ синхронизации Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ обСспСчСния ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… систСм Π·Π°Ρ…Π²Π°Ρ‚Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ для создания Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π½Π΅ΠΉ процСсса пСрСмСщСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ тСорСтичСскиС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² качСствС основы для ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ абстракции Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСмах для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ тСстирования, ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ модСлирования Π΅Π³ΠΎ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π½Π° внСшниС Ρ€Π°Π·Π΄Ρ€Π°ΠΆΠΈΡ‚Π΅Π»ΠΈ Π·Π° счСт обобщСния собранных массивов Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ

    ΠœΠ΅Ρ‚ΠΎΠ΄ формирования Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ процСсса пСрСмСщСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π° основС объСдинСния систСм Π·Π°Ρ…Π²Π°Ρ‚Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ

    Get PDF
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Π·Π°Π΄Π°Ρ‡Π° формирования Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ процСсса пСрСмСщСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎΠΉ области, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса создания Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π½Π΅ΠΉ для ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² Π²ΠΈΡ€Ρ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΌ пространствС, тСстировании ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½Ρ‹Ρ… комплСксов, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π½Π° основС дСйствий Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… систСмах ΠΎΠΏΠΎΡ€Π½ΠΎ-Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΈ. ВыявлСно, Ρ‡Ρ‚ΠΎ срСди ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ Π·Π°Ρ…Π²Π°Ρ‚Ρƒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° нСльзя Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠΉ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях внСшнСй срСды. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ формирования Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ Π½Π° основС комбинирования ΠΈ синхронизации Π΄Π°Π½Π½Ρ‹Ρ… ΠΈΠ· Ρ‚Ρ€Π΅Ρ… систСм Π·Π°Ρ…Π²Π°Ρ‚Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ (Ρ‚Ρ€Π΅ΠΊΠ΅Ρ€Ρ‹ Π²ΠΈΡ€Ρ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΠΊΠΎΡΡ‚ΡŽΠΌ motion capture ΠΈ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ с использованиСм Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ зрСния). ОбъСдинСниС пСрСчислСнных систСм позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ полоТСния ΠΈ состояния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° нСзависимо ΠΎΡ‚ условий внСшнСй срСды (элСктромагнитныС ΠΏΠΎΠΌΠ΅Ρ…ΠΈ, ΠΎΡΠ²Π΅Ρ‰Π΅Π½Π½ΠΎΡΡ‚ΡŒ). Для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° формализация Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ процСсса пСрСмСщСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ описаниС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² сбора ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… систСм Π·Π°Ρ…Π²Π°Ρ‚Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ этапы объСдинСния, Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ синхронизации Π΄Π°Π½Π½Ρ‹Ρ…. Научная Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса сбора Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, объСдинСнии ΠΈ синхронизации Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ обСспСчСния ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… систСм Π·Π°Ρ…Π²Π°Ρ‚Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ для создания Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π½Π΅ΠΉ процСсса пСрСмСщСния Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ тСорСтичСскиС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² качСствС основы для ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ абстракции Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Π½ΠΈ Π² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСмах для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ тСстирования, ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ модСлирования Π΅Π³ΠΎ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π½Π° внСшниС Ρ€Π°Π·Π΄Ρ€Π°ΠΆΠΈΡ‚Π΅Π»ΠΈ Π·Π° счСт обобщСния собранных массивов Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ

    DiffMimic: Efficient Motion Mimicking with Differentiable Physics

    Full text link
    Motion mimicking is a foundational task in physics-based character animation. However, most existing motion mimicking methods are built upon reinforcement learning (RL) and suffer from heavy reward engineering, high variance, and slow convergence with hard explorations. Specifically, they usually take tens of hours or even days of training to mimic a simple motion sequence, resulting in poor scalability. In this work, we leverage differentiable physics simulators (DPS) and propose an efficient motion mimicking method dubbed DiffMimic. Our key insight is that DPS casts a complex policy learning task to a much simpler state matching problem. In particular, DPS learns a stable policy by analytical gradients with ground-truth physical priors hence leading to significantly faster and stabler convergence than RL-based methods. Moreover, to escape from local optima, we utilize a Demonstration Replay mechanism to enable stable gradient backpropagation in a long horizon. Extensive experiments on standard benchmarks show that DiffMimic has a better sample efficiency and time efficiency than existing methods (e.g., DeepMimic). Notably, DiffMimic allows a physically simulated character to learn Backflip after 10 minutes of training and be able to cycle it after 3 hours of training, while the existing approach may require about a day of training to cycle Backflip. More importantly, we hope DiffMimic can benefit more differentiable animation systems with techniques like differentiable clothes simulation in future research.Comment: ICLR 2023 Code is at https://github.com/jiawei-ren/diffmimic Project page is at https://diffmimic.github.io

    Learning predict-and-simulate policies from unorganized human motion data

    No full text
    The goal of this research is to create physically simulated biped characters equipped with a rich repertoire of motor skills. The user can control the characters interactively by modulating their control objectives. The characters can interact physically with each other and with the environment. We present a novel network-based algorithm that learns control policies from unorganized, minimally-labeled human motion data. The network architecture for interactive character animation incorporates an RNN-based motion generator into a DRL-based controller for physics simulation and control. The motion generator guides forward dynamics simulation by feeding a sequence of future motion frames to track. The rich future prediction facilitates policy learning from large training data sets. We will demonstrate the effectiveness of our approach with biped characters that learn a variety of dynamic motor skills from large, unorganized data and react to unexpected perturbation beyond the scope of the training data.N
    corecore