3 research outputs found

    Auto-Rotating Perceptrons

    Full text link
    This paper proposes an improved design of the perceptron unit to mitigate the vanishing gradient problem. This nuisance appears when training deep multilayer perceptron networks with bounded activation functions. The new neuron design, named auto-rotating perceptron (ARP), has a mechanism to ensure that the node always operates in the dynamic region of the activation function, by avoiding saturation of the perceptron. The proposed method does not change the inference structure learned at each neuron. We test the effect of using ARP units in some network architectures which use the sigmoid activation function. The results support our hypothesis that neural networks with ARP units can achieve better learning performance than equivalent models with classic perceptrons.Comment: LatinX in AI Research Workshop at NeurIPS 201

    Megapixel Photon-Counting Color Imaging using Quanta Image Sensor

    Full text link
    Quanta Image Sensor (QIS) is a single-photon detector designed for extremely low light imaging conditions. Majority of the existing QIS prototypes are monochrome based on single-photon avalanche diodes (SPAD). Passive color imaging has not been demonstrated with single-photon detectors due to the intrinsic difficulty of shrinking the pixel size and increasing the spatial resolution while maintaining acceptable intra-pixel cross-talk. In this paper, we present image reconstruction of the first color QIS with a resolution of 1024×10241024 \times 1024 pixels, supporting both single-bit and multi-bit photon counting capability. Our color image reconstruction is enabled by a customized joint demosaicing-denoising algorithm, leveraging truncated Poisson statistics and variance stabilizing transforms. Experimental results of the new sensor and algorithm demonstrate superior color imaging performance for very low-light conditions with a mean exposure of as low as a few photons per pixel in both real and simulated images

    A Bit Too Much? High Speed Imaging from Sparse Photon Counts

    Full text link
    Recent advances in photographic sensing technologies have made it possible to achieve light detection in terms of a single photon. Photon counting sensors are being increasingly used in many diverse applications. We address the problem of jointly recovering spatial and temporal scene radiance from very few photon counts. Our ConvNet-based scheme effectively combines spatial and temporal information present in measurements to reduce noise. We demonstrate that using our method one can acquire videos at a high frame rate and still achieve good quality signal-to-noise ratio. Experiments show that the proposed scheme performs quite well in different challenging scenarios while the existing approaches are unable to handle them
    corecore