1,507,472 research outputs found
Object lessons : a learning object approach to e-learning for social work education
Learning objects are bite-sized digital learning resources designed to tackle the e-learning adoption problem by virtue of their scale, adaptability, and interoperability. The learning object approach advocates the creation of small e-learning resources rather than whole courses: resources that can be mixed and matched; used in a traditional or online learning environment; and adapted for reuse in other discipline areas and in other countries. Storing learning objects within a subject specific digital repository to enable search, discovery, sharing and use adds considerable value to the model. This paper explores the rationale for a learning object approach to e-learning and reflects on early experiences in developing a national learning object repository for social work education in Scotland
SFNet: Learning Object-aware Semantic Correspondence
We address the problem of semantic correspondence, that is, establishing a
dense flow field between images depicting different instances of the same
object or scene category. We propose to use images annotated with binary
foreground masks and subjected to synthetic geometric deformations to train a
convolutional neural network (CNN) for this task. Using these masks as part of
the supervisory signal offers a good compromise between semantic flow methods,
where the amount of training data is limited by the cost of manually selecting
point correspondences, and semantic alignment ones, where the regression of a
single global geometric transformation between images may be sensitive to
image-specific details such as background clutter. We propose a new CNN
architecture, dubbed SFNet, which implements this idea. It leverages a new and
differentiable version of the argmax function for end-to-end training, with a
loss that combines mask and flow consistency with smoothness terms.
Experimental results demonstrate the effectiveness of our approach, which
significantly outperforms the state of the art on standard benchmarks.Comment: cvpr 2019 oral pape
Recommended from our members
A learning object success story
This paper outlines an approach to designing a course entirely in learning objects. It provides a theoretical basis for the design and then presents evaluation data from a master’s level course using this design. It also describes several re-uses of the learning objects on other courses and in different contexts. Each learning object is conceived as a whole learning experience, thus avoiding many of the problems associated with assembling components of disparate kinds
Relation Networks for Object Detection
Although it is well believed for years that modeling relations between
objects would help object recognition, there has not been evidence that the
idea is working in the deep learning era. All state-of-the-art object detection
systems still rely on recognizing object instances individually, without
exploiting their relations during learning.
This work proposes an object relation module. It processes a set of objects
simultaneously through interaction between their appearance feature and
geometry, thus allowing modeling of their relations. It is lightweight and
in-place. It does not require additional supervision and is easy to embed in
existing networks. It is shown effective on improving object recognition and
duplicate removal steps in the modern object detection pipeline. It verifies
the efficacy of modeling object relations in CNN based detection. It gives rise
to the first fully end-to-end object detector
Learning Object Repositories: Problems and Promise
Considers the state of the reuse and sharing of learning related Web-based material. Discusses higher education in relation to the broader world of e-learning, and limitations on the growth and impact of education delivered over the Web
One-shot learning of object categories
Learning visual models of object categories notoriously requires hundreds or thousands of training examples. We show that it is possible to learn much information about a category from just one, or a handful, of images. The key insight is that, rather than learning from scratch, one can take advantage of knowledge coming from previously learned categories, no matter how different these categories might be. We explore a Bayesian implementation of this idea. Object categories are represented by probabilistic models. Prior knowledge is represented as a probability density function on the parameters of these models. The posterior model for an object category is obtained by updating the prior in the light of one or more observations. We test a simple implementation of our algorithm on a database of 101 diverse object categories. We compare category models learned by an implementation of our Bayesian approach to models learned from by maximum likelihood (ML) and maximum a posteriori (MAP) methods. We find that on a database of more than 100 categories, the Bayesian approach produces informative models when the number of training examples is too small for other methods to operate successfully
- …
