2,344 research outputs found

    Learning Mixture Models With the Regularized Latent Maximum Entropy Principle

    Get PDF

    Gibbs Max-margin Topic Models with Data Augmentation

    Full text link
    Max-margin learning is a powerful approach to building classifiers and structured output predictors. Recent work on max-margin supervised topic models has successfully integrated it with Bayesian topic models to discover discriminative latent semantic structures and make accurate predictions for unseen testing data. However, the resulting learning problems are usually hard to solve because of the non-smoothness of the margin loss. Existing approaches to building max-margin supervised topic models rely on an iterative procedure to solve multiple latent SVM subproblems with additional mean-field assumptions on the desired posterior distributions. This paper presents an alternative approach by defining a new max-margin loss. Namely, we present Gibbs max-margin supervised topic models, a latent variable Gibbs classifier to discover hidden topic representations for various tasks, including classification, regression and multi-task learning. Gibbs max-margin supervised topic models minimize an expected margin loss, which is an upper bound of the existing margin loss derived from an expected prediction rule. By introducing augmented variables and integrating out the Dirichlet variables analytically by conjugacy, we develop simple Gibbs sampling algorithms with no restricting assumptions and no need to solve SVM subproblems. Furthermore, each step of the "augment-and-collapse" Gibbs sampling algorithms has an analytical conditional distribution, from which samples can be easily drawn. Experimental results demonstrate significant improvements on time efficiency. The classification performance is also significantly improved over competitors on binary, multi-class and multi-label classification tasks.Comment: 35 page

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    HyperVAE: A Minimum Description Length Variational Hyper-Encoding Network

    Full text link
    We propose a framework called HyperVAE for encoding distributions of distributions. When a target distribution is modeled by a VAE, its neural network parameters \theta is drawn from a distribution p(\theta) which is modeled by a hyper-level VAE. We propose a variational inference using Gaussian mixture models to implicitly encode the parameters \theta into a low dimensional Gaussian distribution. Given a target distribution, we predict the posterior distribution of the latent code, then use a matrix-network decoder to generate a posterior distribution q(\theta). HyperVAE can encode the parameters \theta in full in contrast to common hyper-networks practices, which generate only the scale and bias vectors as target-network parameters. Thus HyperVAE preserves much more information about the model for each task in the latent space. We discuss HyperVAE using the minimum description length (MDL) principle and show that it helps HyperVAE to generalize. We evaluate HyperVAE in density estimation tasks, outlier detection and discovery of novel design classes, demonstrating its efficacy
    corecore