183 research outputs found

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Learning method for ex-situ training of memristor crossbar based multi-layer neural network

    Get PDF
    Memristor is being considered as a game changer for the realization of neuromorphic hardware systems due to its similarity with biological synapse. Recent studies show that memristor crossbar can provide high density and high performance neural network hardware implementation at low power due to its physical layout, nano scale size and low power consumption feature. This paper describes the training method that can be used for the implementation of memristive multi-layer neural network with ex-situ method. We mimic the behavior of memristor crossbar in software training process to achieve more accurate and close computations to hardware. Voltage divider has been used to calculate the dot product in this method. To demonstrate the accuracy and effectiveness of this method, different patterns and non-separable functions using memristor crossbar structures are simulated. The results demonstrate that more accurate computations can be produced using this learning method for ex-situ. It also reduces the learning time of functions

    Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition

    Get PDF
    A neuromorphic chip that combines CMOS analog spiking neurons and memristive synapses offers a promising solution to brain-inspired computing, as it can provide massive neural network parallelism and density. Previous hybrid analog CMOS-memristor approaches required extensive CMOS circuitry for training, and thus eliminated most of the density advantages gained by the adoption of memristor synapses. Further, they used different waveforms for pre and post-synaptic spikes that added undesirable circuit overhead. Here we describe a hardware architecture that can feature a large number of memristor synapses to learn real-world patterns. We present a versatile CMOS neuron that combines integrate-and-fire behavior, drives passive memristors and implements competitive learning in a compact circuit module, and enables in-situ plasticity in the memristor synapses. We demonstrate handwritten-digits recognition using the proposed architecture using transistor-level circuit simulations. As the described neuromorphic architecture is homogeneous, it realizes a fundamental building block for large-scale energy-efficient brain-inspired silicon chips that could lead to next-generation cognitive computing.Comment: This is a preprint of an article accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol 5, no. 2, June 201
    corecore