574 research outputs found

    Learning in Markov Random Fields with Contrastive Free Energies

    Get PDF
    Learning Markov random field (MRF) models is notoriously hard due to the presence of a global normalization factor. In this paper we present a new framework for learning MRF models based on the contrastive free energy (CF) objective function. In this scheme the parameters are updated in an attempt to match the average statistics of the data distribution and a distribution which is (partially or approximately) "relaxed" to the equilibrium distribution. We show that maximum likelihood, mean field, contrastive divergence and pseudo-likelihood objectives can be understood in this paradigm. Moreover, we propose and study a new learning algorithm: the "kstep Kikuchi/Bethe approximation". This algorithm is then tested on a conditional random field model with "skip-chain" edges to model long range interactions in text data. It is demonstrated that with no loss in accuracy, the training time is brought down on average from 19 hours (BP based learning) to 83 minutes, an order of magnitude improvement

    Herding as a Learning System with Edge-of-Chaos Dynamics

    Full text link
    Herding defines a deterministic dynamical system at the edge of chaos. It generates a sequence of model states and parameters by alternating parameter perturbations with state maximizations, where the sequence of states can be interpreted as "samples" from an associated MRF model. Herding differs from maximum likelihood estimation in that the sequence of parameters does not converge to a fixed point and differs from an MCMC posterior sampling approach in that the sequence of states is generated deterministically. Herding may be interpreted as a"perturb and map" method where the parameter perturbations are generated using a deterministic nonlinear dynamical system rather than randomly from a Gumbel distribution. This chapter studies the distinct statistical characteristics of the herding algorithm and shows that the fast convergence rate of the controlled moments may be attributed to edge of chaos dynamics. The herding algorithm can also be generalized to models with latent variables and to a discriminative learning setting. The perceptron cycling theorem ensures that the fast moment matching property is preserved in the more general framework

    Conditional Restricted Boltzmann Machines for Structured Output Prediction

    Full text link
    Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training and generating predictions from conditional RBMs for structured output problems. We first argue that standard Contrastive Divergence-based learning may not be suitable for training CRBMs. We then identify two distinct types of structured output prediction problems and propose an improved learning algorithm for each. The first problem type is one where the output space has arbitrary structure but the set of likely output configurations is relatively small, such as in multi-label classification. The second problem is one where the output space is arbitrarily structured but where the output space variability is much greater, such as in image denoising or pixel labeling. We show that the new learning algorithms can work much better than Contrastive Divergence on both types of problems
    corecore