6 research outputs found

    Learning from compressed observations

    Full text link
    The problem of statistical learning is to construct a predictor of a random variable YY as a function of a related random variable XX on the basis of an i.i.d. training sample from the joint distribution of (X,Y)(X,Y). Allowable predictors are drawn from some specified class, and the goal is to approach asymptotically the performance (expected loss) of the best predictor in the class. We consider the setting in which one has perfect observation of the XX-part of the sample, while the YY-part has to be communicated at some finite bit rate. The encoding of the YY-values is allowed to depend on the XX-values. Under suitable regularity conditions on the admissible predictors, the underlying family of probability distributions and the loss function, we give an information-theoretic characterization of achievable predictor performance in terms of conditional distortion-rate functions. The ideas are illustrated on the example of nonparametric regression in Gaussian noise.Comment: 6 pages; submitted to the 2007 IEEE Information Theory Workshop (ITW 2007

    Are Slepian-Wolf Rates Necessary for Distributed Parameter Estimation?

    Full text link
    We consider a distributed parameter estimation problem, in which multiple terminals send messages related to their local observations using limited rates to a fusion center who will obtain an estimate of a parameter related to observations of all terminals. It is well known that if the transmission rates are in the Slepian-Wolf region, the fusion center can fully recover all observations and hence can construct an estimator having the same performance as that of the centralized case. One natural question is whether Slepian-Wolf rates are necessary to achieve the same estimation performance as that of the centralized case. In this paper, we show that the answer to this question is negative. We establish our result by explicitly constructing an asymptotically minimum variance unbiased estimator (MVUE) that has the same performance as that of the optimal estimator in the centralized case while requiring information rates less than the conditions required in the Slepian-Wolf rate region.Comment: Accepted in Allerton 201
    corecore