5 research outputs found

    A Symmetric Loss Perspective of Reliable Machine Learning

    Full text link
    When minimizing the empirical risk in binary classification, it is a common practice to replace the zero-one loss with a surrogate loss to make the learning objective feasible to optimize. Examples of well-known surrogate losses for binary classification include the logistic loss, hinge loss, and sigmoid loss. It is known that the choice of a surrogate loss can highly influence the performance of the trained classifier and therefore it should be carefully chosen. Recently, surrogate losses that satisfy a certain symmetric condition (aka., symmetric losses) have demonstrated their usefulness in learning from corrupted labels. In this article, we provide an overview of symmetric losses and their applications. First, we review how a symmetric loss can yield robust classification from corrupted labels in balanced error rate (BER) minimization and area under the receiver operating characteristic curve (AUC) maximization. Then, we demonstrate how the robust AUC maximization method can benefit natural language processing in the problem where we want to learn only from relevant keywords and unlabeled documents. Finally, we conclude this article by discussing future directions, including potential applications of symmetric losses for reliable machine learning and the design of non-symmetric losses that can benefit from the symmetric condition.Comment: Preprint of an Invited Review Articl

    Active Learning for Regression with Aggregated Outputs

    Full text link
    Due to the privacy protection or the difficulty of data collection, we cannot observe individual outputs for each instance, but we can observe aggregated outputs that are summed over multiple instances in a set in some real-world applications. To reduce the labeling cost for training regression models for such aggregated data, we propose an active learning method that sequentially selects sets to be labeled to improve the predictive performance with fewer labeled sets. For the selection measurement, the proposed method uses the mutual information, which quantifies the reduction of the uncertainty of the model parameters by observing the aggregated output. With Bayesian linear basis functions for modeling outputs given an input, which include approximated Gaussian processes and neural networks, we can efficiently calculate the mutual information in a closed form. With the experiments using various datasets, we demonstrate that the proposed method achieves better predictive performance with fewer labeled sets than existing methods

    Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations

    Full text link
    Learning with reduced labeling standards, such as noisy label, partial label, and multiple label candidates, which we generically refer to as \textit{imprecise} labels, is a commonplace challenge in machine learning tasks. Previous methods tend to propose specific designs for every emerging imprecise label configuration, which is usually unsustainable when multiple configurations of imprecision coexist. In this paper, we introduce imprecise label learning (ILL), a framework for the unification of learning with various imprecise label configurations. ILL leverages expectation-maximization (EM) for modeling the imprecise label information, treating the precise labels as latent variables.Instead of approximating the correct labels for training, it considers the entire distribution of all possible labeling entailed by the imprecise information. We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings. Notably, ILL surpasses the existing specified techniques for handling imprecise labels, marking the first unified framework with robust and effective performance across various challenging settings. We hope our work will inspire further research on this topic, unleashing the full potential of ILL in wider scenarios where precise labels are expensive and complicated to obtain.Comment: 29 pages, 3 figures, 16 tables, preprin
    corecore