1,567 research outputs found

    A Coverage Monitoring algorithm based on Learning Automata for Wireless Sensor Networks

    Full text link
    To cover a set of targets with known locations within an area with limited or prohibited ground access using a wireless sensor network, one approach is to deploy the sensors remotely, from an aircraft. In this approach, the lack of precise sensor placement is compensated by redundant de-ployment of sensor nodes. This redundancy can also be used for extending the lifetime of the network, if a proper scheduling mechanism is available for scheduling the active and sleep times of sensor nodes in such a way that each node is in active mode only if it is required to. In this pa-per, we propose an efficient scheduling method based on learning automata and we called it LAML, in which each node is equipped with a learning automaton, which helps the node to select its proper state (active or sleep), at any given time. To study the performance of the proposed method, computer simulations are conducted. Results of these simulations show that the pro-posed scheduling method can better prolong the lifetime of the network in comparison to similar existing method

    Data Aggregation Tree Construction: Algorithms and Challenges

    Get PDF

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverableā€™s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Fuzzy TOPSIS-based Secure Neighbor Discovery Mechanism for Improving Reliable Data Dissemination in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) being an indispensable entity of the Internet of Things (IoT) are found to be more and more widely utilized for the rapid advent of IoT environment. The reliability of data dissemination in the IoT environment completely depends on the secure neighbor discovery mechanism that are utilized for effective and efficient communication among the sensor nodes. Secure neighbor discovery mechanisms that significantly determine trustworthy sensor nodes are essential for maintaining potential connectivity and sustaining reliable data delivery in the energy-constrained self organizing WSN. In this paper, Fuzzy Technique of Order Preference Similarity to the Ideal Solution (TOPSIS)-based Secure Neighbor Discovery Mechanism (FTOPSIS-SNDM) is proposed for estimating the trust of each sensor node in the established routing path for the objective of enhancing reliable data delivery in WSNs. This proposed FTOPSIS-SNDM is proposed as an attempt to integrate the merits of Fuzzy Set Theory (FST) and TOPSIS-based Multi-criteria Decision Making (MCDM) approach, since the discovery of secure neighbors involves the exchange of imprecise data and uncertain behavior of sensor nodes. This secure neighbor is also influenced by the factors of packet forwarding potential, delay, distance from the Base Station (BS) and residual energy, which in turn depends on multiple constraints that could be possibly included into the process of secure neighbor discovery. The simulation investigations of the proposed FTOPSIS-SNDM confirmed its predominance over the benchmarked approaches in terms of throughput, energy consumption, network latency, communication overhead for varying number of genuine and malicious neighboring sensor nodes in network
    • ā€¦
    corecore