822,793 research outputs found
Exploring participatory design for SNS-based AEH systems
The rapidly emerging and growing social networking sites (SNS) offer an opportunity to improve adaptive e-learning
experience by introducing a social dimension, connecting users within the system. Making connections and providing communication tools can engage students in creating effective learning environment and enriching learning experiences.
Researchers have been working on introducing SNS features into adaptive educational hypermedia systems. The next stage research is centered on how to enhance SNS facilities of AEH systems, in order to engage students’ participation in collaborative learning and generating and enriching learning materials. Students are the core participants in the adaptive e-learning process, so it is essential for the system designers to consider students’ opinions. This paper aims at exploring
how to apply participatory design methodology in the early stage of the SNS-based AEH system design process
Evolving Connectionist Systems for Adaptive Learning and Knowledge Discovery: Trends and Directions
This paper follows the 25 years of development of methods and systems for knowledge-based neural network systems and more specifically the recent evolving connectionist systems (ECOS). ECOS combine the adaptive/evolving learning ability of neural networks and the approximate reasoning and linguistically meaningful explanation features of symbolic representation, such as fuzzy rules. This review paper presents the classical now hybrid expert systems and evolving neuro-fuzzy systems, along with new developments in spiking neural networks, neurogenetic systems, and quantum inspired systems, all discussed from the point of few of their adaptability, model interpretability and knowledge discovery. The paper discusses new directions for the integration of principles from neural networks, fuzzy systems, bio- and neuroinformatics, and nature in general
Research on the design of adaptive control systems, volume 1 Final report
Adaptive control systems - combined optimization and adaptive control, analysis-synthesis and passive adaptive systems, learning systems, and measurement adaptive system
Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems
Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base
Adaptive Guidance: Enhancing Self-Regulation, Knowledge, and Performance in Technology-Based Training
Considerable research has examined the effects of giving trainees control over their learning (Steinberg, 1977, 1989; Williams, 1993). The most consistent finding of this research has been that trainees do not make good instructional use of the control they are given. Yet, today’s technologically based training systems often provide individuals with significant control over their learning (Brown, 2001). This creates a dilemma that must be addressed if technology is going to be used to create more effective training systems. The current study extended past research that has examined the effects of providing trainees with some form of advisement or guidance in addition to learner control and examined the impact of an instructional strategy, adaptive guidance, on learning and performance in a complex training environment. Overall, it was found that adaptive guidance had a substantial effect on the nature of trainees’ study and practice, self-regulation, knowledge acquired, and performance
Learning styles, personalisation and adaptable e-learning
Common Learning Management Systems (for example Moodle [1] and Blackboard [2]) are limited in the amount of personalisation that they can offer the learner. They are used widely and do offer a number of tools for instructors to enable them to create and manage courses, however, they do not allow for the learner to have a unique personalised learning experience. The e-Learning platform iLearn offers personalisation for the learner in a number of ways and one way is to offer the specific learning material to the learner based on the learner's learning style. Learning styles and how we learn is a vast research area. Brusilovsky and Millan [3] state that learning styles are typically defined as the way people prefer to learn. Examples of commonly used learning styles are Kolb Learning Styles Theory [4], Felder and Silverman Index of Learning Styles [5], VARK [6] and Honey and Mumford Index of Learning Styles [7] and many research projects (SMILE [8], INSPIRE [9], iWeaver [10] amonst others) attempt to incorporate these learning styles into adaptive e-Learning systems. This paper describes how learning styles are currently being used within the area of adaptive e-Learning. The paper then gives an overview of the iLearn project and also how iLearn is using the VARK learning style to enhance the platform's personalisation and adaptability for the learner. This research also describes the system's design and how the learning style is incorporated into the system design and semantic framework within the learner's profile
Profile transformation in mobile technology based educational systems : a thesis presented in partial fulfillment of the requirements for the degree of Master of Information Science in Information Systems at Massey University, Palmerston North, New Zealand
In order to meet the learning needs from various types of students, computer aided education systems try to include new methods to provide personalized education to every student. From the early 1970s, a lot of adaptive educational systems have been created to provide training on a variety of subjects. Combined with the Internet, the adaptive educational systems have become web-based and even more popular. Recently, the development of mobile technology has made the web-based adaptive educational systems accessible through mobile phones. It is necessary that the students can also receive adaptive educational contents on mobile phones. This research project investigated the possible student's preference differences between Personal Computer (PC) and mobile phone, and then proposed a student profile transformation framework to address such differences. This research project conducted two surveys on the student profile transformation between PC and mobile phone. A demo web-based educational system that could be accessed from both PC and mobile phone was also developed for participants of the surveys to give more real and precise responses. Based on Felder-Silverman Learning Style Theory (Felder, 1993; Felder & Silverman, 1988) and the results of the surveys, this thesis proposes a student profile template and a student profile transformation framework, which both fully considered the influences of device capabilities and locations on students' preferences on mobile phones. Furthermore, the proposed framework integrates a solution for unsupported preferences and preference conflicts. By implementing the proposed template and framework, the students' preference changes between PC and mobile phone are automatically updated according to various device capabilities and locations, and then the students can receive adaptive educational contents that meet their updated preferences
REinforcement learning based Adaptive samPling: REAPing Rewards by Exploring Protein Conformational Landscapes
One of the key limitations of Molecular Dynamics simulations is the
computational intractability of sampling protein conformational landscapes
associated with either large system size or long timescales. To overcome this
bottleneck, we present the REinforcement learning based Adaptive samPling
(REAP) algorithm that aims to efficiently sample conformational space by
learning the relative importance of each reaction coordinate as it samples the
landscape. To achieve this, the algorithm uses concepts from the field of
reinforcement learning, a subset of machine learning, which rewards sampling
along important degrees of freedom and disregards others that do not facilitate
exploration or exploitation. We demonstrate the effectiveness of REAP by
comparing the sampling to long continuous MD simulations and least-counts
adaptive sampling on two model landscapes (L-shaped and circular), and
realistic systems such as alanine dipeptide and Src kinase. In all four
systems, the REAP algorithm consistently demonstrates its ability to explore
conformational space faster than the other two methods when comparing the
expected values of the landscape discovered for a given amount of time. The key
advantage of REAP is on-the-fly estimation of the importance of collective
variables, which makes it particularly useful for systems with limited
structural information
- …
