204,638 research outputs found

    The Knowledge Life Cycle for e-learning

    No full text
    In this paper, we examine the semantic aspects of e-learning from both pedagogical and technological points of view. We suggest that if semantics are to fulfil their potential in the learning domain then a paradigm shift in perspective is necessary, from information-based content delivery to knowledge-based collaborative learning services. We propose a semantics driven Knowledge Life Cycle that characterises the key phases in managing semantics and knowledge, show how this can be applied to the learning domain and demonstrate the value of semantics via an example of knowledge reuse in learning assessment management

    Knowledge Spaces and the Completeness of Learning Strategies

    Get PDF
    We propose a theory of learning aimed to formalize some ideas underlying Coquand's game semantics and Krivine's realizability of classical logic. We introduce a notion of knowledge state together with a new topology, capturing finite positive and negative information that guides a learning strategy. We use a leading example to illustrate how non-constructive proofs lead to continuous and effective learning strategies over knowledge spaces, and prove that our learning semantics is sound and complete w.r.t. classical truth, as it is the case for Coquand's and Krivine's approaches

    Distributional semantics beyond words: Supervised learning of analogy and paraphrase

    Full text link
    There have been several efforts to extend distributional semantics beyond individual words, to measure the similarity of word pairs, phrases, and sentences (briefly, tuples; ordered sets of words, contiguous or noncontiguous). One way to extend beyond words is to compare two tuples using a function that combines pairwise similarities between the component words in the tuples. A strength of this approach is that it works with both relational similarity (analogy) and compositional similarity (paraphrase). However, past work required hand-coding the combination function for different tasks. The main contribution of this paper is that combination functions are generated by supervised learning. We achieve state-of-the-art results in measuring relational similarity between word pairs (SAT analogies and SemEval~2012 Task 2) and measuring compositional similarity between noun-modifier phrases and unigrams (multiple-choice paraphrase questions)

    Interactive Learning-Based Realizability for Heyting Arithmetic with EM1

    Full text link
    We apply to the semantics of Arithmetic the idea of ``finite approximation'' used to provide computational interpretations of Herbrand's Theorem, and we interpret classical proofs as constructive proofs (with constructive rules for ∨,∃\vee, \exists) over a suitable structure \StructureN for the language of natural numbers and maps of G\"odel's system \SystemT. We introduce a new Realizability semantics we call ``Interactive learning-based Realizability'', for Heyting Arithmetic plus \EM_1 (Excluded middle axiom restricted to Σ10\Sigma^0_1 formulas). Individuals of \StructureN evolve with time, and realizers may ``interact'' with them, by influencing their evolution. We build our semantics over Avigad's fixed point result, but the same semantics may be defined over different constructive interpretations of classical arithmetic (Berardi and de' Liguoro use continuations). Our notion of realizability extends intuitionistic realizability and differs from it only in the atomic case: we interpret atomic realizers as ``learning agents''
    • …
    corecore