76 research outputs found

    Graph Distillation for Action Detection with Privileged Modalities

    Full text link
    We propose a technique that tackles action detection in multimodal videos under a realistic and challenging condition in which only limited training data and partially observed modalities are available. Common methods in transfer learning do not take advantage of the extra modalities potentially available in the source domain. On the other hand, previous work on multimodal learning only focuses on a single domain or task and does not handle the modality discrepancy between training and testing. In this work, we propose a method termed graph distillation that incorporates rich privileged information from a large-scale multimodal dataset in the source domain, and improves the learning in the target domain where training data and modalities are scarce. We evaluate our approach on action classification and detection tasks in multimodal videos, and show that our model outperforms the state-of-the-art by a large margin on the NTU RGB+D and PKU-MMD benchmarks. The code is released at http://alan.vision/eccv18_graph/.Comment: ECCV 201

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Real-time human action recognition using raw depth video-based recurrent neural networks

    Get PDF
    This work proposes and compare two different approaches for real-time human action recognition (HAR) from raw depth video sequences. Both proposals are based on the convolutional long short-term memory unit, namely ConvLSTM, with differences in the architecture and the long-term learning. The former uses a video-length adaptive input data generator (stateless) whereas the latter explores the stateful ability of general recurrent neural networks but is applied in the particular case of HAR. This stateful property allows the model to accumulate discriminative patterns from previous frames without compromising computer memory. Furthermore, since the proposal uses only depth information, HAR is carried out preserving the privacy of people in the scene, since their identities can not be recognized. Both neural networks have been trained and tested using the large-scale NTU RGB+D dataset. Experimental results show that the proposed models achieve competitive recognition accuracies with lower computational cost compared with state-of-the-art methods and prove that, in the particular case of videos, the rarely-used stateful mode of recurrent neural networks significantly improves the accuracy obtained with the standard mode. The recognition accuracies obtained are 75.26% (CS) and 75.45% (CV) for the stateless model, with an average time consumption per video of 0.21 s, and 80.43% (CS) and 79.91%(CV) with 0.89 s for the stateful one.Agencia Estatal de InvestigaciónUniversidad de Alcal

    SAR-NAS: Skeleton-based Action Recognition via Neural Architecture Searching

    Full text link
    This paper presents a study of automatic design of neural network architectures for skeleton-based action recognition. Specifically, we encode a skeleton-based action instance into a tensor and carefully define a set of operations to build two types of network cells: normal cells and reduction cells. The recently developed DARTS (Differentiable Architecture Search) is adopted to search for an effective network architecture that is built upon the two types of cells. All operations are 2D based in order to reduce the overall computation and search space. Experiments on the challenging NTU RGB+D and Kinectics datasets have verified that most of the networks developed to date for skeleton-based action recognition are likely not compact and efficient. The proposed method provides an approach to search for such a compact network that is able to achieve comparative or even better performance than the state-of-the-art methods

    A Comparative Review of Recent Kinect-based Action Recognition Algorithms

    Full text link
    Video-based human action recognition is currently one of the most active research areas in computer vision. Various research studies indicate that the performance of action recognition is highly dependent on the type of features being extracted and how the actions are represented. Since the release of the Kinect camera, a large number of Kinect-based human action recognition techniques have been proposed in the literature. However, there still does not exist a thorough comparison of these Kinect-based techniques under the grouping of feature types, such as handcrafted versus deep learning features and depth-based versus skeleton-based features. In this paper, we analyze and compare ten recent Kinect-based algorithms for both cross-subject action recognition and cross-view action recognition using six benchmark datasets. In addition, we have implemented and improved some of these techniques and included their variants in the comparison. Our experiments show that the majority of methods perform better on cross-subject action recognition than cross-view action recognition, that skeleton-based features are more robust for cross-view recognition than depth-based features, and that deep learning features are suitable for large datasets.Comment: Accepted by the IEEE Transactions on Image Processin
    corecore