24,632 research outputs found

    Leveraging Machine Learning and Big Data for Smart Buildings: A Comprehensive Survey

    Full text link
    Future buildings will offer new convenience, comfort, and efficiency possibilities to their residents. Changes will occur to the way people live as technology involves into people's lives and information processing is fully integrated into their daily living activities and objects. The future expectation of smart buildings includes making the residents' experience as easy and comfortable as possible. The massive streaming data generated and captured by smart building appliances and devices contains valuable information that needs to be mined to facilitate timely actions and better decision making. Machine learning and big data analytics will undoubtedly play a critical role to enable the delivery of such smart services. In this paper, we survey the area of smart building with a special focus on the role of techniques from machine learning and big data analytics. This survey also reviews the current trends and challenges faced in the development of smart building services

    Collecting and Annotating the Large Continuous Action Dataset

    Full text link
    We make available to the community a new dataset to support action-recognition research. This dataset is different from prior datasets in several key ways. It is significantly larger. It contains streaming video with long segments containing multiple action occurrences that often overlap in space and/or time. All actions were filmed in the same collection of backgrounds so that background gives little clue as to action class. We had five humans replicate the annotation of temporal extent of action occurrences labeled with their class and measured a surprisingly low level of intercoder agreement. A baseline experiment shows that recent state-of-the-art methods perform poorly on this dataset. This suggests that this will be a challenging dataset to foster advances in action-recognition research. This manuscript serves to describe the novel content and characteristics of the LCA dataset, present the design decisions made when filming the dataset, and document the novel methods employed to annotate the dataset

    Detecting Temporally Consistent Objects in Videos through Object Class Label Propagation

    Full text link
    Object proposals for detecting moving or static video objects need to address issues such as speed, memory complexity and temporal consistency. We propose an efficient Video Object Proposal (VOP) generation method and show its efficacy in learning a better video object detector. A deep-learning based video object detector learned using the proposed VOP achieves state-of-the-art detection performance on the Youtube-Objects dataset. We further propose a clustering of VOPs which can efficiently be used for detecting objects in video in a streaming fashion. As opposed to applying per-frame convolutional neural network (CNN) based object detection, our proposed method called Objects in Video Enabler thRough LAbel Propagation (OVERLAP) needs to classify only a small fraction of all candidate proposals in every video frame through streaming clustering of object proposals and class-label propagation. Source code will be made available soon.Comment: Accepted for publication in WACV 201

    Tracking as Online Decision-Making: Learning a Policy from Streaming Videos with Reinforcement Learning

    Full text link
    We formulate tracking as an online decision-making process, where a tracking agent must follow an object despite ambiguous image frames and a limited computational budget. Crucially, the agent must decide where to look in the upcoming frames, when to reinitialize because it believes the target has been lost, and when to update its appearance model for the tracked object. Such decisions are typically made heuristically. Instead, we propose to learn an optimal decision-making policy by formulating tracking as a partially observable decision-making process (POMDP). We learn policies with deep reinforcement learning algorithms that need supervision (a reward signal) only when the track has gone awry. We demonstrate that sparse rewards allow us to quickly train on massive datasets, several orders of magnitude more than past work. Interestingly, by treating the data source of Internet videos as unlimited streams, we both learn and evaluate our trackers in a single, unified computational stream

    A Dynamic Service-Migration Mechanism in Edge Cognitive Computing

    Full text link
    Driven by the vision of edge computing and the success of rich cognitive services based on artificial intelligence, a new computing paradigm, edge cognitive computing (ECC), is a promising approach that applies cognitive computing at the edge of the network. ECC has the potential to provide the cognition of users and network environmental information, and further to provide elastic cognitive computing services to achieve a higher energy efficiency and a higher Quality of Experience (QoE) compared to edge computing. This paper firstly introduces our architecture of the ECC and then describes its design issues in detail. Moreover, we propose an ECC-based dynamic service migration mechanism to provide an insight into how cognitive computing is combined with edge computing. In order to evaluate the proposed mechanism, a practical platform for dynamic service migration is built up, where the services are migrated based on the behavioral cognition of a mobile user. The experimental results show that the proposed ECC architecture has ultra-low latency and a high user experience, while providing better service to the user, saving computing resources, and achieving a high energy efficiency

    Context-Aware Query Selection for Active Learning in Event Recognition

    Full text link
    Activity recognition is a challenging problem with many practical applications. In addition to the visual features, recent approaches have benefited from the use of context, e.g., inter-relationships among the activities and objects. However, these approaches require data to be labeled, entirely available beforehand, and not designed to be updated continuously, which make them unsuitable for surveillance applications. In contrast, we propose a continuous-learning framework for context-aware activity recognition from unlabeled video, which has two distinct advantages over existing methods. First, it employs a novel active-learning technique that not only exploits the informativeness of the individual activities but also utilizes their contextual information during query selection; this leads to significant reduction in expensive manual annotation effort. Second, the learned models can be adapted online as more data is available. We formulate a conditional random field model that encodes the context and devise an information-theoretic approach that utilizes entropy and mutual information of the nodes to compute the set of most informative queries, which are labeled by a human. These labels are combined with graphical inference techniques for incremental updates. We provide a theoretical formulation of the active learning framework with an analytic solution. Experiments on six challenging datasets demonstrate that our framework achieves superior performance with significantly less manual labeling.Comment: To appear in Transactions of Pattern Pattern Analysis and Machine Intelligence (T-PAMI

    Lattice Long Short-Term Memory for Human Action Recognition

    Full text link
    Human actions captured in video sequences are three-dimensional signals characterizing visual appearance and motion dynamics. To learn action patterns, existing methods adopt Convolutional and/or Recurrent Neural Networks (CNNs and RNNs). CNN based methods are effective in learning spatial appearances, but are limited in modeling long-term motion dynamics. RNNs, especially Long Short-Term Memory (LSTM), are able to learn temporal motion dynamics. However, naively applying RNNs to video sequences in a convolutional manner implicitly assumes that motions in videos are stationary across different spatial locations. This assumption is valid for short-term motions but invalid when the duration of the motion is long. In this work, we propose Lattice-LSTM (L2STM), which extends LSTM by learning independent hidden state transitions of memory cells for individual spatial locations. This method effectively enhances the ability to model dynamics across time and addresses the non-stationary issue of long-term motion dynamics without significantly increasing the model complexity. Additionally, we introduce a novel multi-modal training procedure for training our network. Unlike traditional two-stream architectures which use RGB and optical flow information as input, our two-stream model leverages both modalities to jointly train both input gates and both forget gates in the network rather than treating the two streams as separate entities with no information about the other. We apply this end-to-end system to benchmark datasets (UCF-101 and HMDB-51) of human action recognition. Experiments show that on both datasets, our proposed method outperforms all existing ones that are based on LSTM and/or CNNs of similar model complexities.Comment: ICCV201

    EIQIS: Toward an Event-Oriented Indexable and Queryable Intelligent Surveillance System

    Full text link
    Edge computing provides the ability to link distributor users for multimedia content, while retaining the power of significant data storage and access at a centralized computer. Two requirements of significance include: what information show be processed at the edge and how the content should be stored. Answers to these questions require a combination of query-based search, access, and response as well as indexed-based processing, storage, and distribution. A measure of intelligence is not what is known, but is recalled, hence, future edge intelligence must provide recalled information for dynamic response. In this paper, a novel event-oriented indexable and queryable intelligent surveillance (EIQIS) system is introduced leveraging the on-site edge devices to collect the information sensed in format of frames and extracts useful features to enhance situation awareness. The design principles are discussed and a preliminary proof-of-concept prototype is built that validated the feasibility of the proposed idea

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    Recurrent Convolutions for Causal 3D CNNs

    Full text link
    Recently, three dimensional (3D) convolutional neural networks (CNNs) have emerged as dominant methods to capture spatiotemporal representations in videos, by adding to pre-existing 2D CNNs a third, temporal dimension. Such 3D CNNs, however, are anti-causal (i.e., they exploit information from both the past and the future frames to produce feature representations, thus preventing their use in online settings), constrain the temporal reasoning horizon to the size of the temporal convolution kernel, and are not temporal resolution-preserving for video sequence-to-sequence modelling, as, for instance, in action detection. To address these serious limitations, here we present a new 3D CNN architecture for the causal/online processing of videos. Namely, we propose a novel Recurrent Convolutional Network (RCN), which relies on recurrence to capture the temporal context across frames at each network level. Our network decomposes 3D convolutions into (1) a 2D spatial convolution component, and (2) an additional hidden state 1×11\times 1 convolution, applied across time. The hidden state at any time tt is assumed to depend on the hidden state at t−1t-1 and on the current output of the spatial convolution component. As a result, the proposed network: (i) produces causal outputs, (ii) provides flexible temporal reasoning, (iii) preserves temporal resolution. Our experiments on the large-scale large Kinetics and MultiThumos datasets show that the proposed method performs comparably to anti-causal 3D CNNs, while being causal and using fewer parameters.Comment: Workshop on Large Scale Holistic Video Understanding, ICCVW, 201
    • …
    corecore