6 research outputs found

    Cross-Domain Visual Recognition via Domain Adaptive Dictionary Learning

    Full text link
    In real-world visual recognition problems, the assumption that the training data (source domain) and test data (target domain) are sampled from the same distribution is often violated. This is known as the domain adaptation problem. In this work, we propose a novel domain-adaptive dictionary learning framework for cross-domain visual recognition. Our method generates a set of intermediate domains. These intermediate domains form a smooth path and bridge the gap between the source and target domains. Specifically, we not only learn a common dictionary to encode the domain-shared features, but also learn a set of domain-specific dictionaries to model the domain shift. The separation of the common and domain-specific dictionaries enables us to learn more compact and reconstructive dictionaries for domain adaptation. These dictionaries are learned by alternating between domain-adaptive sparse coding and dictionary updating steps. Meanwhile, our approach gradually recovers the feature representations of both source and target data along the domain path. By aligning all the recovered domain data, we derive the final domain-adaptive features for cross-domain visual recognition. Extensive experiments on three public datasets demonstrates that our approach outperforms most state-of-the-art methods.Comment: Submitted to IEEE TIP Journa

    Disentangling 3D Pose in A Dendritic CNN for Unconstrained 2D Face Alignment

    Full text link
    Heatmap regression has been used for landmark localization for quite a while now. Most of the methods use a very deep stack of bottleneck modules for heatmap classification stage, followed by heatmap regression to extract the keypoints. In this paper, we present a single dendritic CNN, termed as Pose Conditioned Dendritic Convolution Neural Network (PCD-CNN), where a classification network is followed by a second and modular classification network, trained in an end to end fashion to obtain accurate landmark points. Following a Bayesian formulation, we disentangle the 3D pose of a face image explicitly by conditioning the landmark estimation on pose, making it different from multi-tasking approaches. Extensive experimentation shows that conditioning on pose reduces the localization error by making it agnostic to face pose. The proposed model can be extended to yield variable number of landmark points and hence broadening its applicability to other datasets. Instead of increasing depth or width of the network, we train the CNN efficiently with Mask-Softmax Loss and hard sample mining to achieve upto 15%15\% reduction in error compared to state-of-the-art methods for extreme and medium pose face images from challenging datasets including AFLW, AFW, COFW and IBUG.Comment: CVPR'1

    Learning Simple Thresholded Features with Sparse Support Recovery

    Full text link
    The thresholded feature has recently emerged as an extremely efficient, yet rough empirical approximation, of the time-consuming sparse coding inference process. Such an approximation has not yet been rigorously examined, and standard dictionaries often lead to non-optimal performance when used for computing thresholded features. In this paper, we first present two theoretical recovery guarantees for the thresholded feature to exactly recover the nonzero support of the sparse code. Motivated by them, we then formulate the Dictionary Learning for Thresholded Features (DLTF) model, which learns an optimized dictionary for applying the thresholded feature. In particular, for the (k,2)(k, 2) norm involved, a novel proximal operator with log-linear time complexity O(mlogm)O(m\log m) is derived. We evaluate the performance of DLTF on a vast range of synthetic and real-data tasks, where DLTF demonstrates remarkable efficiency, effectiveness and robustness in all experiments. In addition, we briefly discuss the potential link between DLTF and deep learning building blocks.Comment: Accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Synthesis of High-Quality Visible Faces from Polarimetric Thermal Faces using Generative Adversarial Networks

    Full text link
    The large domain discrepancy between faces captured in polarimetric (or conventional) thermal and visible domain makes cross-domain face verification a highly challenging problem for human examiners as well as computer vision algorithms. Previous approaches utilize either a two-step procedure (visible feature estimation and visible image reconstruction) or an input-level fusion technique, where different Stokes images are concatenated and used as a multi-channel input to synthesize the visible image given the corresponding polarimetric signatures. Although these methods have yielded improvements, we argue that input-level fusion alone may not be sufficient to realize the full potential of the available Stokes images. We propose a Generative Adversarial Networks (GAN) based multi-stream feature-level fusion technique to synthesize high-quality visible images from prolarimetric thermal images. The proposed network consists of a generator sub-network, constructed using an encoder-decoder network based on dense residual blocks, and a multi-scale discriminator sub-network. The generator network is trained by optimizing an adversarial loss in addition to a perceptual loss and an identity preserving loss to enable photo realistic generation of visible images while preserving discriminative characteristics. An extended dataset consisting of polarimetric thermal facial signatures of 111 subjects is also introduced. Multiple experiments evaluated on different experimental protocols demonstrate that the proposed method achieves state-of-the-art performance. Code will be made available at https://github.com/hezhangsprinter.Comment: Note that the extended dataset is available upon request. Researchers can contact Dr. Sean Hu from ARL at [email protected] to obtain the datase

    Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition

    Full text link
    In recent years, the performance of face verification and recognition systems based on deep convolutional neural networks (DCNNs) has significantly improved. A typical pipeline for face verification includes training a deep network for subject classification with softmax loss, using the penultimate layer output as the feature descriptor, and generating a cosine similarity score given a pair of face images or videos. The softmax loss function does not optimize the features to have higher similarity score for positive pairs and lower similarity score for negative pairs, which leads to a performance gap. In this paper, we propose a new loss function, called Crystal Loss, that restricts the features to lie on a hypersphere of a fixed radius. The loss can be easily implemented using existing deep learning frameworks. We show that integrating this simple step in the training pipeline significantly improves the performance of face verification and recognition systems. We achieve state-of-the-art performance for face verification and recognition on challenging LFW, IJB-A, IJB-B and IJB-C datasets over a large range of false alarm rates (10-1 to 10-7).Comment: Previously portions of this work appeared in arXiv:1703.09507, which was a conference version. This version is an extended journal version of i

    Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection

    Full text link
    In this paper, we propose a novel object detection algorithm named "Deep Regionlets" by integrating deep neural networks and a conventional detection schema for accurate generic object detection. Motivated by the effectiveness of regionlets for modeling object deformations and multiple aspect ratios, we incorporate regionlets into an end-to-end trainable deep learning framework. The deep regionlets framework consists of a region selection network and a deep regionlet learning module. Specifically, given a detection bounding box proposal, the region selection network provides guidance on where to select sub-regions from which features can be learned from. An object proposal typically contains 3-16 sub-regions. The regionlet learning module focuses on local feature selection and transformations to alleviate the effects of appearance variations. To this end, we first realize non-rectangular region selection within the detection framework to accommodate variations in object appearance. Moreover, we design a "gating network" within the regionlet leaning module to enable instance dependent soft feature selection and pooling. The Deep Regionlets framework is trained end-to-end without additional efforts. We present ablation studies and extensive experiments on the PASCAL VOC dataset and the Microsoft COCO dataset. The proposed method yields competitive performance over state-of-the-art algorithms, such as RetinaNet and Mask R-CNN, even without additional segmentation labels.Comment: arXiv admin note: substantial text overlap with arXiv:1712.0240
    corecore