77 research outputs found

    Spectral Unmixing with Multiple Dictionaries

    Full text link
    Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    SULoRA: Subspace Unmixing with Low-Rank Attribute Embedding for Hyperspectral Data Analysis

    Get PDF
    To support high-level analysis of spaceborne imaging spectroscopy (hyperspectral) imagery, spectral unmixing has been gaining significance in recent years. However, from the inevitable spectral variability, caused by illumination and topography change, atmospheric effects and so on, makes it difficult to accurately estimate abundance maps in spectral unmixing. Classical unmixing methods, e.g. linear mixing model (LMM), extended linear mixing model (ELMM), fail to robustly handle this issue, particularly facing complex spectral variability. To this end, we propose a subspace-based unmixing model using low-rank learning strategy, called subspace unmixing with low-rank attribute embedding (SULoRA), robustly against spectral variability in inverse problems of hyperspectral unmixing. Unlike those previous approaches that unmix the spectral signatures directly in original space, SULoRA is a general subspace unmixing framework that jointly estimates subspace projections and abundance maps in order to find a ‘raw’ subspace which is more suitable for carrying out the unmixing procedure. More importantly, we model such ‘raw’ subspace with low-rank attribute embedding. By projecting the original data into a low-rank subspace, SULoRA can effectively address various spectral variabilities in spectral unmixing. Furthermore, we adopt an alternating direction method of multipliers (ADMM) based to solve the resulting optimization problem. Extensive experiments on synthetic and real datasets are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    From representation learning to thematic classification - Application to hierarchical analysis of hyperspectral images

    Get PDF
    Numerous frameworks have been developed in order to analyze the increasing amount of available image data. Among those methods, supervised classification has received considerable attention leading to the development of state-of-the-art classification methods. These methods aim at inferring the class of each observation given a specific class nomenclature by exploiting a set of labeled observations. Thanks to extensive research efforts of the community, classification methods have become very efficient. Nevertheless, the results of a classification remains a highlevel interpretation of the scene since it only gives a single class to summarize all information in a given pixel. Contrary to classification methods, representation learning methods are model-based approaches designed especially to handle high-dimensional data and extract meaningful latent variables. By using physic-based models, these methods allow the user to extract very meaningful variables and get a very detailed interpretation of the considered image. The main objective of this thesis is to develop a unified framework for classification and representation learning. These two methods provide complementary approaches allowing to address the problem using a hierarchical modeling approach. The representation learning approach is used to build a low-level model of the data whereas classification is used to incorporate supervised information and may be seen as a high-level interpretation of the data. Two different paradigms, namely Bayesian models and optimization approaches, are explored to set up this hierarchical model. The proposed models are then tested in the specific context of hyperspectral imaging where the representation learning task is specified as a spectral unmixing proble

    Nonlinear hyperspectral unmixing: strategies for nonlinear mixture detection, endmember estimation and band-selection

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2016.Abstract : Mixing phenomena in hyperspectral images depend on a variety of factors such as the resolution of observation devices, the properties of materials, and how these materials interact with incident light in the scene. Different parametric and nonparametric models have been considered to address hyperspectral unmixing problems. The simplest one is the linear mixing model. Nevertheless, it has been recognized that mixing phenomena can also be nonlinear. Kernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. However, the corresponding nonlinear analysis techniques are necessarily more challenging and complex than those employed for linear unmixing. Within this context, it makes sense to search for different strategies to produce simpler and/or more accurate results. In this thesis, we tackle three distinct parts of the complete spectral unmixing (SU) problem. First, we propose a technique for detecting nonlinearly mixed pixels. The detection approach is based on the comparison of the reconstruction errors using both a Gaussian process regression model and a linear regression model. The two errors are combined into a detection test statistics for which a probability density function can be reasonably approximated. Second, we propose an iterative endmember extraction algorithm to be employed in combination with the detection algorithm. The proposed detect-then-unmix strategy, which consists of extracting endmembers, detecting nonlinearly mixed pixels and unmixing, is tested with synthetic and real images. Finally, we propose two methods for band selection (BS) in the reproducing kernel Hilbert space (RKHS), which lead to a significant reduction of the processing time required by nonlinear unmixing techniques. The first method employs the kernel k-means (KKM) algorithm to find clusters in the RKHS. Each cluster centroid is then associated to the closest mapped spectral vector. The second method is centralized, and it is based upon the coherence criterion, which sets the largest value allowed for correlations between the basis kernel functions characterizing the unmixing model. We show that the proposed BS approach is equivalent to solving a maximum clique problem (MCP), that is, to searching for the largest complete subgraph in a graph. Furthermore, we devise a strategy for selecting the coherence threshold and the Gaussian kernel bandwidth using coherence bounds for linearly independent bases. Simulation results illustrate the efficiency of the proposed method.Imagem hiperespectral (HI) é uma imagem em que cada pixel contém centenas (ou até milhares) de bandas estreitas e contíguas amostradas num amplo domínio do espectro eletromagnético. Sensores hiperespectrais normalmente trocam resolução espacial por resolução espectral devido principalmente a fatores como a distância entre o instrumento e a cena alvo, e limitada capacidade de processamento, transmissão e armazenamento históricas, mas que se tornam cada vez menos problemáticas. Este tipo de imagem encontra ampla utilização em uma gama de aplicações em astronomia, agricultura, imagens biomédicas, geociências, física, vigilância e sensoriamento remoto. A usual baixa resolução espacial de sensores espectrais implica que o que se observa em cada pixel é normalmente uma mistura das assinaturas espectrais dos materiais presentes na cena correspondente (normalmente denominados de endmembers). Assim um pixel em uma imagem hiperespectral não pode mais ser determinado por um tom ou cor mas sim por uma assinatura espectral do material, ou materiais, que se encontram na região analisada. O modelo mais simples e amplamente utilizado em aplicações com imagens hiperespectrais é o modelo linear, no qual o pixel observado é modelado como uma combinação linear dos endmembers. No entanto, fortes evidências de múltiplas reflexões da radiação solar e/ou materiais intimamente misturados, i.e., misturados em nível microscópico, resultam em diversos modelos não-lineares dos quais destacam-se os modelos bilineares, modelos de pós não-linearidade, modelos de mistura íntima e modelos não-paramétricos. Define-se então o problema de desmistura espectral (ou em inglês spectral unmixing - SU), que consiste em determinar as assinaturas espectrais dos endmembers puros presentes em uma cena e suas proporções (denominadas de abundâncias) para cada pixel da imagem. SU é um problema inverso e por natureza cego uma vez que raramente estão disponíveis informações confiáveis sobre o número de endmembers, suas assinaturas espectrais e suas distribuições em uma dada cena. Este problema possui forte conexão com o problema de separação cega de fontes mas difere no fato de que no problema de SU a independência de fontes não pode ser considerada já que as abundâncias são de fato proporções e por isso dependentes (abundâncias são positivas e devem somar 1). A determinação dos endmembers é conhecida como extração de endmembers e a literatura apresenta uma gama de algoritmos com esse propósito. Esses algoritmos normalmente exploram a geometria convexa resultante do modelo linear e da restrições sobre as abundâncias. Quando os endmembers são considerados conhecidos, ou estimados em um passo anterior, o problema de SU torna-se um problema supervisionado, com pares de entrada (endmembers) e saída (pixels), reduzindo-se a uma etapa de inversão, ou regressão, para determinar as proporções dos endmembers em cada pixel. Quando modelos não-lineares são considerados, a literatura apresenta diversas técnicas que podem ser empregadas dependendo da disponibilidade de informações sobre os endmembers e sobre os modelos que regem a interação entre a luz e os materiais numa dada cena. No entanto, informações sobre o tipo de mistura presente em cenas reais são raramente disponíveis. Nesse contexto, métodos kernelizados, que assumem modelos não-paramétricos, têm sido especialmente bem sucedidos quando aplicados ao problema de SU. Dentre esses métodos destaca-se o SK-Hype, que emprega a teoria de mínimos quadrados-máquinas de vetores de suporte (LS-SVM), numa abordagem que considera um modelo linear com uma flutuação não-linear representada por uma função pertencente a um espaço de Hilbert de kernel reprodutivos (RKHS). Nesta tese de doutoramento diferentes problemas foram abordados dentro do processo de SU de imagens hiperespectrais não-lineares como um todo. Contribuições foram dadas para a detecção de misturas não-lineares, estimação de endmembers quando uma parte considerável da imagem possui misturas não-lineares, e seleção de bandas no espaço de Hilbert de kernels reprodutivos (RKHS). Todos os métodos foram testados através de simulações com dados sintéticos e reais, e considerando unmixing supervisionado e não-supervisionado. No Capítulo 4, um método semi-paramétrico de detecção de misturas não-lineares é apresentado para imagens hiperespectrais. Esse detector compara a performance de dois modelos: um linear paramétrico, usando mínimos-quadrados (LS), e um não-linear não-paramétrico usando processos Gaussianos. A idéia da utilização de modelos não-paramétricos se conecta com o fato de que na prática pouco se sabe sobre a real natureza da não-linearidade presente na cena. Os erros de ajuste desses modelos são então comparados em uma estatística de teste para a qual é possível aproximar a distribuição na hipótese de misturas lineares e, assim, estimar um limiar de detecção para uma dada probabilidade de falso-alarme. A performance do detector proposto foi estudada considerando problemas supervisionados e não-supervisionados, sendo mostrado que a melhoria obtida no desempenho SU utilizando o detector proposto é estatisticamente consistente. Além disso, um grau de não-linearidade baseado nas energias relativas das contribuições lineares e não-lineares do processo de mistura foi definido para quantificar a importância das parcelas linear e não-linear dos modelos. Tal definição é importante para uma correta avaliação dos desempenhos relativos de diferentes estratégias de detecção de misturas não-lineares. No Capítulo 5 um algoritmo iterativo foi proposto para a estimação de endmembers como uma etapa de pré-processamento para problemas SU não supervisionados. Esse algoritmo intercala etapas de detecção de misturas não-lineares e estimação de endmembers de forma iterativa, na qual uma etapa de estimação de endmembers é seguida por uma etapa de detecção, na qual uma parcela dos pixels mais não-lineares é descartada. Esse processo é repetido por um número máximo de execuções ou até um critério de parada ser atingido. Demonstra-se que o uso combinado do detector proposto com um algoritmo de estimação de endmembers leva a melhores resultados de SU quando comparado com soluções do estado da arte. Simulações utilizando diferentes cenários corroboram as conclusões. No Capítulo 6 dois métodos para SU não-linear de imagens hiperespectrais, que empregam seleção de bandas (BS) diretamente no espaço de Hilbert de kernels reprodutivos (RKHS), são apresentados. O primeiro método utiliza o algoritmo Kernel K-Means (KKM) para encontrar clusters diretamente no RKHS onde cada centroide é então associada ao vetor espectral mais próximo. O segundo método é centralizado e baseado no critério de coerência, que incorpora uma medida da qualidade do dicionário no RKHS para a SU não-linear. Essa abordagem centralizada é equivalente a resolver um problema de máximo clique (MCP). Contrariamente a outros métodos concorrentes que não incluem uma escolha eficiente dos parâmetros do modelo, o método proposto requer apenas uma estimativa inicial do número de bandas selecionadas. Os resultados das simulações empregando dados, tanto sintéticos como reais, ilustram a qualidade dos resultados de unmixing obtidos com os métodos de BS propostos. Ao utilizar o SK-Hype, para um número reduzido de bandas, são obtidas estimativas de abundância tão precisas quanto aquelas obtidas utilizando o método SK-Hype com todo o espectro disponível, mas com uma pequena fração do custo computacional

    Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing

    Get PDF
    Over the past decades, enormous efforts have been made to improve the performance of linear or nonlinear mixing models for hyperspectral unmixing (HU), yet their ability to simultaneously generalize various spectral variabilities (SVs) and extract physically meaningful endmembers still remains limited due to the poor ability in data fitting and reconstruction and the sensitivity to various SVs. Inspired by the powerful learning ability of deep learning (DL), we attempt to develop a general DL approach for HU, by fully considering the properties of endmembers extracted from the hyperspectral imagery, called endmember-guided unmixing network (EGU-Net). Beyond the alone autoencoder-like architecture, EGU-Net is a two-stream Siamese deep network, which learns an additional network from the pure or nearly pure endmembers to correct the weights of another unmixing network by sharing network parameters and adding spectrally meaningful constraints (e.g., nonnegativity and sum-to-one) toward a more accurate and interpretable unmixing solution. Furthermore, the resulting general framework is not only limited to pixelwise spectral unmixing but also applicable to spatial information modeling with convolutional operators for spatial–spectral unmixing. Experimental results conducted on three different datasets with the ground truth of abundance maps corresponding to each material demonstrate the effectiveness and superiority of the EGU-Net over state-of-the-art unmixing algorithms. The codes will be available from the website: https://github.com/danfenghong/IEEE_TNNLS_EGU-Net

    Regularization approaches to hyperspectral unmixing

    Get PDF
    We consider a few different approaches to hyperspectral unmixing of remotely sensed imagery which exploit and extend recent advances in sparse statistical regularization, handling of constraints and dictionary reduction. Hyperspectral unmixing methods often use a conventional least-squares based lasso which assumes that the data follows the Gaussian distribution, we use this as a starting point. In addition, we consider a robust approach to sparse spectral unmixing of remotely sensed imagery which reduces the sensitivity of the estimator to outliers. Due to water absorption and atmospheric effects that affect data collection, hyperspectral images are prone to have large outliers. The framework comprises of several well-principled penalties. A non-convex, hyper-Laplacian prior is incorporated to induce sparsity in the number of active pure spectral components, and total variation regularizer is included to exploit the spatial-contextual information of hyperspectral images. Enforcing the sum-to-one and non-negativity constraint on the models parameters is essential for obtaining realistic estimates. We consider two approaches to account for this: an iterative heuristic renormalization and projection onto the positive orthant, and a reparametrization of the coefficients which gives rise to a theoretically founded method. Since the large size of modern spectral libraries cannot only present computational challenges but also introduce collinearities between regressors, we introduce a library reduction step. This uses the multiple signal classi fication (MUSIC) array processing algorithm, which both speeds up unmixing and yields superior results in scenarios where the library size is extensive. We show that although these problems are non-convex, they can be solved by a properly de fined algorithm based on either trust region optimization or iteratively reweighted least squares. The performance of the different approaches is validated in several simulated and real hyperspectral data experiments

    Improving Hyperspectral Subpixel Target Detection Using Hybrid Detection Space

    Full text link
    A Hyper-Spectral Image (HSI) has high spectral and low spatial resolution. As a result, most targets exist as subpixels, which pose challenges in target detection. Moreover, limitation of target and background samples always hinders the target detection performance. In this thesis, a hybrid method for subpixel target detection of an HSI using minimal prior knowledge is developed. The Matched Filter (MF) and Adaptive Cosine Estimator (ACE) are two popular algorithms in HSI target detection. They have different advantages in differentiating target from background. In the proposed method, the scores of MF and ACE algorithms are used to construct a hybrid detection space. First, some high abundance target spectra are randomly picked from the scene to perform initial detection to determine the target and background subsets. Then, the reference target spectrum and background covariance matrix are improved iteratively, using the hybrid detection space. As the iterations continue, the reference target spectrum gets closer and closer to the central line that connects the centers of target and background and resulting in noticeable improvement in target detection. Two synthetic datasets and two real datasets are used in the experiments. The results are evaluated based on the mean detection rate, Receiver Operating Characteristic (ROC) curve and observation of the detection results. Compared to traditional MF and ACE algorithms with Reed-Xiaoli Detector (RXD) background covariance matrix estimation, the new method shows much better performance on all four datasets. This method can be applied in environmental monitoring, mineral detection, as well as oceanography and forestry reconnaissance to search for extremely small target distribution in a large scene
    corecore