1,647 research outputs found

    Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data

    Full text link
    This paper presents a new method for shadow removal using unpaired data, enabling us to avoid tedious annotations and obtain more diverse training samples. However, directly employing adversarial learning and cycle-consistency constraints is insufficient to learn the underlying relationship between the shadow and shadow-free domains, since the mapping between shadow and shadow-free images is not simply one-to-one. To address the problem, we formulate Mask-ShadowGAN, a new deep framework that automatically learns to produce a shadow mask from the input shadow image and then takes the mask to guide the shadow generation via re-formulated cycle-consistency constraints. Particularly, the framework simultaneously learns to produce shadow masks and learns to remove shadows, to maximize the overall performance. Also, we prepared an unpaired dataset for shadow removal and demonstrated the effectiveness of Mask-ShadowGAN on various experiments, even it was trained on unpaired data.Comment: Accepted to ICCV 201

    Thermal-Infrared Remote Target Detection System for Maritime Rescue based on Data Augmentation with 3D Synthetic Data

    Full text link
    This paper proposes a thermal-infrared (TIR) remote target detection system for maritime rescue using deep learning and data augmentation. We established a self-collected TIR dataset consisting of multiple scenes imitating human rescue situations using a TIR camera (FLIR). Additionally, to address dataset scarcity and improve model robustness, a synthetic dataset from a 3D game (ARMA3) to augment the data is further collected. However, a significant domain gap exists between synthetic TIR and real TIR images. Hence, a proper domain adaptation algorithm is essential to overcome the gap. Therefore, we suggest a domain adaptation algorithm in a target-background separated manner from 3D game-to-real, based on a generative model, to address this issue. Furthermore, a segmentation network with fixed-weight kernels at the head is proposed to improve the signal-to-noise ratio (SNR) and provide weak attention, as remote TIR targets inherently suffer from unclear boundaries. Experiment results reveal that the network trained on augmented data consisting of translated synthetic and real TIR data outperforms that trained on only real TIR data by a large margin. Furthermore, the proposed segmentation model surpasses the performance of state-of-the-art segmentation methods.Comment: 12 page
    • …
    corecore