143,666 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Joint Regression and Ranking for Image Enhancement

    Full text link
    Research on automated image enhancement has gained momentum in recent years, partially due to the need for easy-to-use tools for enhancing pictures captured by ubiquitous cameras on mobile devices. Many of the existing leading methods employ machine-learning-based techniques, by which some enhancement parameters for a given image are found by relating the image to the training images with known enhancement parameters. While knowing the structure of the parameter space can facilitate search for the optimal solution, none of the existing methods has explicitly modeled and learned that structure. This paper presents an end-to-end, novel joint regression and ranking approach to model the interaction between desired enhancement parameters and images to be processed, employing a Gaussian process (GP). GP allows searching for ideal parameters using only the image features. The model naturally leads to a ranking technique for comparing images in the induced feature space. Comparative evaluation using the ground-truth based on the MIT-Adobe FiveK dataset plus subjective tests on an additional data-set were used to demonstrate the effectiveness of the proposed approach.Comment: WACV 201

    Acceleration of Histogram-Based Contrast Enhancement via Selective Downsampling

    Full text link
    In this paper, we propose a general framework to accelerate the universal histogram-based image contrast enhancement (CE) algorithms. Both spatial and gray-level selective down- sampling of digital images are adopted to decrease computational cost, while the visual quality of enhanced images is still preserved and without apparent degradation. Mapping function calibration is novelly proposed to reconstruct the pixel mapping on the gray levels missed by downsampling. As two case studies, accelerations of histogram equalization (HE) and the state-of-the-art global CE algorithm, i.e., spatial mutual information and PageRank (SMIRANK), are presented detailedly. Both quantitative and qualitative assessment results have verified the effectiveness of our proposed CE acceleration framework. In typical tests, computational efficiencies of HE and SMIRANK have been speeded up by about 3.9 and 13.5 times, respectively.Comment: accepted by IET Image Processin
    • …
    corecore