9,375 research outputs found

    Weakly Supervised Action Localization by Sparse Temporal Pooling Network

    Full text link
    We propose a weakly supervised temporal action localization algorithm on untrimmed videos using convolutional neural networks. Our algorithm learns from video-level class labels and predicts temporal intervals of human actions with no requirement of temporal localization annotations. We design our network to identify a sparse subset of key segments associated with target actions in a video using an attention module and fuse the key segments through adaptive temporal pooling. Our loss function is comprised of two terms that minimize the video-level action classification error and enforce the sparsity of the segment selection. At inference time, we extract and score temporal proposals using temporal class activations and class-agnostic attentions to estimate the time intervals that correspond to target actions. The proposed algorithm attains state-of-the-art results on the THUMOS14 dataset and outstanding performance on ActivityNet1.3 even with its weak supervision.Comment: Accepted to CVPR 201

    Temporal Localization of Fine-Grained Actions in Videos by Domain Transfer from Web Images

    Full text link
    We address the problem of fine-grained action localization from temporally untrimmed web videos. We assume that only weak video-level annotations are available for training. The goal is to use these weak labels to identify temporal segments corresponding to the actions, and learn models that generalize to unconstrained web videos. We find that web images queried by action names serve as well-localized highlights for many actions, but are noisily labeled. To solve this problem, we propose a simple yet effective method that takes weak video labels and noisy image labels as input, and generates localized action frames as output. This is achieved by cross-domain transfer between video frames and web images, using pre-trained deep convolutional neural networks. We then use the localized action frames to train action recognition models with long short-term memory networks. We collect a fine-grained sports action data set FGA-240 of more than 130,000 YouTube videos. It has 240 fine-grained actions under 85 sports activities. Convincing results are shown on the FGA-240 data set, as well as the THUMOS 2014 localization data set with untrimmed training videos.Comment: Camera ready version for ACM Multimedia 201

    Action Search: Spotting Actions in Videos and Its Application to Temporal Action Localization

    Full text link
    State-of-the-art temporal action detectors inefficiently search the entire video for specific actions. Despite the encouraging progress these methods achieve, it is crucial to design automated approaches that only explore parts of the video which are the most relevant to the actions being searched for. To address this need, we propose the new problem of action spotting in video, which we define as finding a specific action in a video while observing a small portion of that video. Inspired by the observation that humans are extremely efficient and accurate in spotting and finding action instances in video, we propose Action Search, a novel Recurrent Neural Network approach that mimics the way humans spot actions. Moreover, to address the absence of data recording the behavior of human annotators, we put forward the Human Searches dataset, which compiles the search sequences employed by human annotators spotting actions in the AVA and THUMOS14 datasets. We consider temporal action localization as an application of the action spotting problem. Experiments on the THUMOS14 dataset reveal that our model is not only able to explore the video efficiently (observing on average 17.3% of the video) but it also accurately finds human activities with 30.8% mAP.Comment: Accepted to ECCV 201
    corecore