82,441 research outputs found

    Learning Weak Constraints in Answer Set Programming

    Get PDF
    This paper contributes to the area of inductive logic programming by presenting a new learning framework that allows the learning of weak constraints in Answer Set Programming (ASP). The framework, called Learning from Ordered Answer Sets, generalises our previous work on learning ASP programs without weak constraints, by considering a new notion of examples as ordered pairs of partial answer sets that exemplify which answer sets of a learned hypothesis (together with a given background knowledge) are preferred to others. In this new learning task inductive solutions are searched within a hypothesis space of normal rules, choice rules, and hard and weak constraints. We propose a new algorithm, ILASP2, which is sound and complete with respect to our new learning framework. We investigate its applicability to learning preferences in an interview scheduling problem and also demonstrate that when restricted to the task of learning ASP programs without weak constraints, ILASP2 can be much more efficient than our previously proposed system.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Inductive learning of answer set programs

    Get PDF
    The goal of Inductive Logic Programming (ILP) is to find a hypothesis that explains a set of examples in the context of some pre-existing background knowledge. Until recently, most research on ILP targeted learning definite logic programs. This thesis constitutes the first comprehensive work on learning answer set programs, introducing new learning frameworks, theoretical results on the complexity and generality of these frameworks, algorithms for learning ASP programs, and an extensive evaluation of these algorithms. Although there is previous work on learning ASP programs, existing learning frameworks are either brave -- where examples should be explained by at least one answer set -- or cautious where examples should be explained by all answer sets. There are cases where brave induction is too weak and cautious induction is too strong. Our proposed frameworks combine brave and cautious learning and can learn ASP programs containing choice rules and constraints. Many applications of ASP use weak constraints to express a preference ordering over the answer sets of a program. Learning weak constraints corresponds to preference learning, which we achieve by introducing ordering examples. We then explore the generality of our frameworks, investigating what it means for a framework to be general enough to distinguish one hypothesis from another. We show that our frameworks are more general than both brave and cautious induction. We also present a new family of algorithms, called ILASP (Inductive Learning of Answer Set Programs), which we prove to be sound and complete. This work concerns learning from both non-noisy and noisy examples. In the latter case, ILASP returns a hypothesis that maximises the coverage of examples while minimising the length of the hypothesis. In our evaluation, we show that ILASP scales to tasks with large numbers of examples finding accurate hypotheses even in the presence of high proportions of noisy examples.Open Acces

    On the Relationships Among Probabilistic Extensions of Answer Set Semantics

    Get PDF
    abstract: Answer Set Programming (ASP) is one of the main formalisms in Knowledge Representation (KR) that is being widely applied in a large number of applications. While ASP is effective on Boolean decision problems, it has difficulty in expressing quantitative uncertainty and probability in a natural way. Logic Programs under the answer set semantics and Markov Logic Network (LPMLN) is a recent extension of answer set programs to overcome the limitation of the deterministic nature of ASP by adopting the log-linear weight scheme of Markov Logic. This thesis investigates the relationships between LPMLN and two other extensions of ASP: weak constraints to express a quantitative preference among answer sets, and P-log to incorporate probabilistic uncertainty. The studied relationships show how different extensions of answer set programs are related to each other, and how they are related to formalisms in Statistical Relational Learning, such as Problog and MLN, which have shown to be closely related to LPMLN. The studied relationships compare the properties of the involved languages and provide ways to compute one language using an implementation of another language. This thesis first presents a translation of LPMLN into programs with weak constraints. The translation allows for computing the most probable stable models (i.e., MAP estimates) or probability distribution in LPMLN programs using standard ASP solvers so that the well-developed techniques in ASP can be utilized. This result can be extended to other formalisms, such as Markov Logic, ProbLog, and Pearl’s Causal Models, that are shown to be translatable into LPMLN. This thesis also presents a translation of P-log into LPMLN. The translation tells how probabilistic nonmonotonicity (the ability of the reasoner to change his probabilistic model as a result of new information) of P-log can be represented in LPMLN, which yields a way to compute P-log using standard ASP solvers or MLN solvers.Dissertation/ThesisMasters Thesis Computer Science 201

    Learning programs by learning from failures

    Full text link
    We describe an inductive logic programming (ILP) approach called learning from failures. In this approach, an ILP system (the learner) decomposes the learning problem into three separate stages: generate, test, and constrain. In the generate stage, the learner generates a hypothesis (a logic program) that satisfies a set of hypothesis constraints (constraints on the syntactic form of hypotheses). In the test stage, the learner tests the hypothesis against training examples. A hypothesis fails when it does not entail all the positive examples or entails a negative example. If a hypothesis fails, then, in the constrain stage, the learner learns constraints from the failed hypothesis to prune the hypothesis space, i.e. to constrain subsequent hypothesis generation. For instance, if a hypothesis is too general (entails a negative example), the constraints prune generalisations of the hypothesis. If a hypothesis is too specific (does not entail all the positive examples), the constraints prune specialisations of the hypothesis. This loop repeats until either (i) the learner finds a hypothesis that entails all the positive and none of the negative examples, or (ii) there are no more hypotheses to test. We introduce Popper, an ILP system that implements this approach by combining answer set programming and Prolog. Popper supports infinite problem domains, reasoning about lists and numbers, learning textually minimal programs, and learning recursive programs. Our experimental results on three domains (toy game problems, robot strategies, and list transformations) show that (i) constraints drastically improve learning performance, and (ii) Popper can outperform existing ILP systems, both in terms of predictive accuracies and learning times.Comment: Accepted for the machine learning journa
    • …
    corecore