9 research outputs found

    Learning Video Representations from Correspondence Proposals

    Full text link
    Correspondences between frames encode rich information about dynamic content in videos. However, it is challenging to effectively capture and learn those due to their irregular structure and complex dynamics. In this paper, we propose a novel neural network that learns video representations by aggregating information from potential correspondences. This network, named CPNetCPNet, can learn evolving 2D fields with temporal consistency. In particular, it can effectively learn representations for videos by mixing appearance and long-range motion with an RGB-only input. We provide extensive ablation experiments to validate our model. CPNet shows stronger performance than existing methods on Kinetics and achieves the state-of-the-art performance on Something-Something and Jester. We provide analysis towards the behavior of our model and show its robustness to errors in proposals.Comment: CVPR 2019 (Oral

    Adaptive Interaction Modeling via Graph Operations Search

    Full text link
    Interaction modeling is important for video action analysis. Recently, several works design specific structures to model interactions in videos. However, their structures are manually designed and non-adaptive, which require structures design efforts and more importantly could not model interactions adaptively. In this paper, we automate the process of structures design to learn adaptive structures for interaction modeling. We propose to search the network structures with differentiable architecture search mechanism, which learns to construct adaptive structures for different videos to facilitate adaptive interaction modeling. To this end, we first design the search space with several basic graph operations that explicitly capture different relations in videos. We experimentally demonstrate that our architecture search framework learns to construct adaptive interaction modeling structures, which provides more understanding about the relations between the structures and some interaction characteristics, and also releases the requirement of structures design efforts. Additionally, we show that the designed basic graph operations in the search space are able to model different interactions in videos. The experiments on two interaction datasets show that our method achieves competitive performance with state-of-the-arts

    V4D:4D Convolutional Neural Networks for Video-level Representation Learning

    Full text link
    Most existing 3D CNNs for video representation learning are clip-based methods, and thus do not consider video-level temporal evolution of spatio-temporal features. In this paper, we propose Video-level 4D Convolutional Neural Networks, referred as V4D, to model the evolution of long-range spatio-temporal representation with 4D convolutions, and at the same time, to preserve strong 3D spatio-temporal representation with residual connections. Specifically, we design a new 4D residual block able to capture inter-clip interactions, which could enhance the representation power of the original clip-level 3D CNNs. The 4D residual blocks can be easily integrated into the existing 3D CNNs to perform long-range modeling hierarchically. We further introduce the training and inference methods for the proposed V4D. Extensive experiments are conducted on three video recognition benchmarks, where V4D achieves excellent results, surpassing recent 3D CNNs by a large margin.Comment: To appear in ICLR202

    Learning Efficient Video Representation with Video Shuffle Networks

    Full text link
    3D CNN shows its strong ability in learning spatiotemporal representation in recent video recognition tasks. However, inflating 2D convolution to 3D inevitably introduces additional computational costs, making it cumbersome in practical deployment. We consider whether there is a way to equip the conventional 2D convolution with temporal vision no requiring expanding its kernel. To this end, we propose the video shuffle, a parameter-free plug-in component that efficiently reallocates the inputs of 2D convolution so that its receptive field can be extended to the temporal dimension. In practical, video shuffle firstly divides each frame feature into multiple groups and then aggregate the grouped features via temporal shuffle operation. This allows the following 2D convolution aggregate the global spatiotemporal features. The proposed video shuffle can be flexibly inserted into popular 2D CNNs, forming the Video Shuffle Networks (VSN). With a simple yet efficient implementation, VSN performs surprisingly well on temporal modeling benchmarks. In experiments, VSN not only gains non-trivial improvements on Kinetics and Moments in Time, but also achieves state-of-the-art performance on Something-Something-V1, Something-Something-V2 datasets

    SmallBigNet: Integrating Core and Contextual Views for Video Classification

    Full text link
    Temporal convolution has been widely used for video classification. However, it is performed on spatio-temporal contexts in a limited view, which often weakens its capacity of learning video representation. To alleviate this problem, we propose a concise and novel SmallBig network, with the cooperation of small and big views. For the current time step, the small view branch is used to learn the core semantics, while the big view branch is used to capture the contextual semantics. Unlike traditional temporal convolution, the big view branch can provide the small view branch with the most activated video features from a broader 3D receptive field. Via aggregating such big-view contexts, the small view branch can learn more robust and discriminative spatio-temporal representations for video classification. Furthermore, we propose to share convolution in the small and big view branch, which improves model compactness as well as alleviates overfitting. As a result, our SmallBigNet achieves a comparable model size like 2D CNNs, while boosting accuracy like 3D CNNs. We conduct extensive experiments on the large-scale video benchmarks, e.g., Kinetics400, Something-Something V1 and V2. Our SmallBig network outperforms a number of recent state-of-the-art approaches, in terms of accuracy and/or efficiency. The codes and models will be available on https://github.com/xhl-video/SmallBigNet.Comment: CVPR202

    G-TAD: Sub-Graph Localization for Temporal Action Detection

    Full text link
    Temporal action detection is a fundamental yet challenging task in video understanding. Video context is a critical cue to effectively detect actions, but current works mainly focus on temporal context, while neglecting semantic context as well as other important context properties. In this work, we propose a graph convolutional network (GCN) model to adaptively incorporate multi-level semantic context into video features and cast temporal action detection as a sub-graph localization problem. Specifically, we formulate video snippets as graph nodes, snippet-snippet correlations as edges, and actions associated with context as target sub-graphs. With graph convolution as the basic operation, we design a GCN block called GCNeXt, which learns the features of each node by aggregating its context and dynamically updates the edges in the graph. To localize each sub-graph, we also design an SGAlign layer to embed each sub-graph into the Euclidean space. Extensive experiments show that G-TAD is capable of finding effective video context without extra supervision and achieves state-of-the-art performance on two detection benchmarks. On ActivityNet-1.3, it obtains an average mAP of 34.09%; on THUMOS14, it reaches 51.6% at [email protected] when combined with a proposal processing method. G-TAD code is publicly available at https://github.com/frostinassiky/gtad.Comment: Accepted by CVPR2020. 8 pages, 9 figures, 2 pages appendi

    AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification

    Full text link
    Convolutional operations have two limitations: (1) do not explicitly model where to focus as the same filter is applied to all the positions, and (2) are unsuitable for modeling long-range dependencies as they only operate on a small neighborhood. While both limitations can be alleviated by attention operations, many design choices remain to be determined to use attention, especially when applying attention to videos. Towards a principled way of applying attention to videos, we address the task of spatiotemporal attention cell search. We propose a novel search space for spatiotemporal attention cells, which allows the search algorithm to flexibly explore various design choices in the cell. The discovered attention cells can be seamlessly inserted into existing backbone networks, e.g., I3D or S3D, and improve video classification accuracy by more than 2% on both Kinetics-600 and MiT datasets. The discovered attention cells outperform non-local blocks on both datasets, and demonstrate strong generalization across different modalities, backbones, and datasets. Inserting our attention cells into I3D-R50 yields state-of-the-art performance on both datasets.Comment: ECCV 202

    Causal Contextual Prediction for Learned Image Compression

    Full text link
    Over the past several years, we have witnessed impressive progress in the field of learned image compression. Recent learned image codecs are commonly based on autoencoders, that first encode an image into low-dimensional latent representations and then decode them for reconstruction purposes. To capture spatial dependencies in the latent space, prior works exploit hyperprior and spatial context model to build an entropy model, which estimates the bit-rate for end-to-end rate-distortion optimization. However, such an entropy model is suboptimal from two aspects: (1) It fails to capture spatially global correlations among the latents. (2) Cross-channel relationships of the latents are still underexplored. In this paper, we propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space. A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts. Furthermore, we propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points. Both these two models facilitate entropy estimation without the transmission of overhead. In addition, we further adopt a new separate attention module to build more powerful transform networks. Experimental results demonstrate that our full image compression model outperforms standard VVC/H.266 codec on Kodak dataset in terms of both PSNR and MS-SSIM, yielding the state-of-the-art rate-distortion performance.Comment: We add some descriptions for the improved quantization in the latest arxiv versio

    Recent Progress in Appearance-based Action Recognition

    Full text link
    Action recognition, which is formulated as a task to identify various human actions in a video, has attracted increasing interest from computer vision researchers due to its importance in various applications. Recently, appearance-based methods have achieved promising progress towards accurate action recognition. In general, these methods mainly fulfill the task by applying various schemes to model spatial and temporal visual information effectively. To better understand the current progress of appearance-based action recognition, we provide a comprehensive review of recent achievements in this area. In particular, we summarise and discuss several dozens of related research papers, which can be roughly divided into four categories according to different appearance modelling strategies. The obtained categories include 2D convolutional methods, 3D convolutional methods, motion representation-based methods, and context representation-based methods. We analyse and discuss representative methods from each category, comprehensively. Empirical results are also summarised to better illustrate cutting-edge algorithms. We conclude by identifying important areas for future research gleaned from our categorisation
    corecore