3,785 research outputs found

    Iteratively Learning Representations for Unseen Entities with Inter-Rule Correlations

    Full text link
    Recent work on knowledge graph completion (KGC) focused on learning embeddings of entities and relations in knowledge graphs. These embedding methods require that all test entities are observed at training time, resulting in a time-consuming retraining process for out-of-knowledge-graph (OOKG) entities. To address this issue, current inductive knowledge embedding methods employ graph neural networks (GNNs) to represent unseen entities by aggregating information of known neighbors. They face three important challenges: (i) data sparsity, (ii) the presence of complex patterns in knowledge graphs (e.g., inter-rule correlations), and (iii) the presence of interactions among rule mining, rule inference, and embedding. In this paper, we propose a virtual neighbor network with inter-rule correlations (VNC) that consists of three stages: (i) rule mining, (ii) rule inference, and (iii) embedding. In the rule mining process, to identify complex patterns in knowledge graphs, both logic rules and inter-rule correlations are extracted from knowledge graphs based on operations over relation embeddings. To reduce data sparsity, virtual neighbors for OOKG entities are predicted and assigned soft labels by optimizing a rule-constrained problem. We also devise an iterative framework to capture the underlying relations between rule learning and embedding learning. In our experiments, results on both link prediction and triple classification tasks show that the proposed VNC framework achieves state-of-the-art performance on four widely-used knowledge graphs. Further analysis reveals that VNC is robust to the proportion of unseen entities and effectively mitigates data sparsity.Comment: Accepted at CIKM 202

    Interaction Embeddings for Prediction and Explanation in Knowledge Graphs

    Full text link
    Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.Comment: This paper is accepted by WSDM201

    Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning

    Full text link
    Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.Comment: This paper is accepted by WWW'1
    • …
    corecore