788 research outputs found

    Transfer Adaptation Learning: A Decade Survey

    Full text link
    The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as transfer adaptation learning (TAL) when it needs knowledge correspondence between different moments/domains. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. TAL aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance, which is presenting a blowout publication trend. This paper surveys the advances of TAL methodologies in the past decade, and the technical challenges and essential problems of TAL have been observed and discussed with deep insights and new perspectives. Broader solutions of transfer adaptation learning being created by researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey helps researchers rapidly but comprehensively understand and identify the research foundation, research status, theoretical limitations, future challenges and under-studied issues (universality, interpretability, and credibility) to be broken in the field toward universal representation and safe applications in open-world scenarios.Comment: 26 pages, 4 figure

    Domain Adaptive Attention Model for Unsupervised Cross-Domain Person Re-Identification

    Full text link
    Person re-identification (Re-ID) across multiple datasets is a challenging yet important task due to the possibly large distinctions between different datasets and the lack of training samples in practical applications. This work proposes a novel unsupervised domain adaption framework which transfers discriminative representations from the labeled source domain (dataset) to the unlabeled target domain (dataset). We propose to formulate the domain adaption task as an one-class classification problem with a novel domain similarity loss. Given the feature map of any image from a backbone network, a novel domain adaptive attention model (DAAM) first automatically learns to separate the feature map of an image to a domain-shared feature (DSH) map and a domain-specific feature (DSP) map simultaneously. Specially, the residual attention mechanism is designed to model DSP feature map for avoiding negative transfer. Then, a DSH branch and a DSP branch are introduced to learn DSH and DSP feature maps respectively. To reduce domain divergence caused by that the source and target datasets are collected from different environments, we force to project the DSH feature maps from different domains to a new nominal domain, and a novel domain similarity loss is proposed based on one-class classification. In addition, a novel unsupervised person Re-ID loss is proposed to take full use of unlabeled target data. Extensive experiments on the Market-1501 and DukeMTMC-reID benchmarks demonstrate state-of-the-art performance of the proposed method. Code will be released to facilitate further studies on the cross-domain person re-identification task

    Correlation Alignment by Riemannian Metric for Domain Adaptation

    Full text link
    Domain adaptation techniques address the problem of reducing the sensitivity of machine learning methods to the so-called domain shift, namely the difference between source (training) and target (test) data distributions. In particular, unsupervised domain adaptation assumes no labels are available in the target domain. To this end, aligning second order statistics (covariances) of target and source domains have proven to be an effective approach ti fill the gap between the domains. However, covariance matrices do not form a subspace of the Euclidean space, but live in a Riemannian manifold with non-positive curvature, making the usual Euclidean metric suboptimal to measure distances. In this paper, we extend the idea of training a neural network with a constraint on the covariances of the hidden layer features, by rigorously accounting for the curved structure of the manifold of symmetric positive definite matrices. The resulting loss function exploits a theoretically sound geodesic distance on such manifold. Results show indeed the suboptimal nature of the Euclidean distance. This makes us able to perform better than previous approaches on the standard Office dataset, a benchmark for domain adaptation techniques

    Virtual Mixup Training for Unsupervised Domain Adaptation

    Full text link
    We study the problem of unsupervised domain adaptation which aims to adapt models trained on a labeled source domain to a completely unlabeled target domain. Recently, the cluster assumption has been applied to unsupervised domain adaptation and achieved strong performance. One critical factor in successful training of the cluster assumption is to impose the locally-Lipschitz constraint to the model. Existing methods only impose the locally-Lipschitz constraint around the training points while miss the other areas, such as the points in-between training data. In this paper, we address this issue by encouraging the model to behave linearly in-between training points. We propose a new regularization method called Virtual Mixup Training (VMT), which is able to incorporate the locally-Lipschitz constraint to the areas in-between training data. Unlike the traditional mixup model, our method constructs the combination samples without using the label information, allowing it to apply to unsupervised domain adaptation. The proposed method is generic and can be combined with most existing models such as the recent state-of-the-art model called VADA. Extensive experiments demonstrate that VMT significantly improves the performance of VADA on six domain adaptation benchmark datasets. For the challenging task of adapting MNIST to SVHN, VMT can improve the accuracy of VADA by over 30\%. Code is available at \url{https://github.com/xudonmao/VMT}

    Domain Adaptation Meets Disentangled Representation Learning and Style Transfer

    Full text link
    Many methods have been proposed to solve the domain adaptation problem recently. However, the success of them implicitly funds on the assumption that the information of domains are fully transferrable. If the assumption is not satisfied, the effect of negative transfer may degrade domain adaptation. In this paper, a better learning network has been proposed by considering three tasks - domain adaptation, disentangled representation, and style transfer simultaneously. Firstly, the learned features are disentangled into common parts and specific parts. The common parts represent the transferrable features, which are suitable for domain adaptation with less negative transfer. Conversely, the specific parts characterize the unique style of each individual domain. Based on this, the new concept of feature exchange across domains, which can not only enhance the transferability of common features but also be useful for image style transfer, is introduced. These designs allow us to introduce five types of training objectives to realize the three challenging tasks at the same time. The experimental results show that our architecture can be adaptive well to full transfer learning and partial transfer learning upon a well-learned disentangled representation. Besides, the trained network also demonstrates high potential to generate style-transferred images.Comment: 22 pages, 7 figures, ACCV2018 submissio

    Progressive Feature Alignment for Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation (UDA) transfers knowledge from a label-rich source domain to a fully-unlabeled target domain. To tackle this task, recent approaches resort to discriminative domain transfer in virtue of pseudo-labels to enforce the class-level distribution alignment across the source and target domains. These methods, however, are vulnerable to the error accumulation and thus incapable of preserving cross-domain category consistency, as the pseudo-labeling accuracy is not guaranteed explicitly. In this paper, we propose the Progressive Feature Alignment Network (PFAN) to align the discriminative features across domains progressively and effectively, via exploiting the intra-class variation in the target domain. To be specific, we first develop an Easy-to-Hard Transfer Strategy (EHTS) and an Adaptive Prototype Alignment (APA) step to train our model iteratively and alternatively. Moreover, upon observing that a good domain adaptation usually requires a non-saturated source classifier, we consider a simple yet efficient way to retard the convergence speed of the source classification loss by further involving a temperature variate into the soft-max function. The extensive experimental results reveal that the proposed PFAN exceeds the state-of-the-art performance on three UDA datasets.Comment: Accepted by CVPR 201

    Asymmetric Tri-training for Unsupervised Domain Adaptation

    Full text link
    Deep-layered models trained on a large number of labeled samples boost the accuracy of many tasks. It is important to apply such models to different domains because collecting many labeled samples in various domains is expensive. In unsupervised domain adaptation, one needs to train a classifier that works well on a target domain when provided with labeled source samples and unlabeled target samples. Although many methods aim to match the distributions of source and target samples, simply matching the distribution cannot ensure accuracy on the target domain. To learn discriminative representations for the target domain, we assume that artificially labeling target samples can result in a good representation. Tri-training leverages three classifiers equally to give pseudo-labels to unlabeled samples, but the method does not assume labeling samples generated from a different domain.In this paper, we propose an asymmetric tri-training method for unsupervised domain adaptation, where we assign pseudo-labels to unlabeled samples and train neural networks as if they are true labels. In our work, we use three networks asymmetrically. By asymmetric, we mean that two networks are used to label unlabeled target samples and one network is trained by the samples to obtain target-discriminative representations. We evaluate our method on digit recognition and sentiment analysis datasets. Our proposed method achieves state-of-the-art performance on the benchmark digit recognition datasets of domain adaptation.Comment: TBA on ICML201

    A Compact DNN: Approaching GoogLeNet-Level Accuracy of Classification and Domain Adaptation

    Full text link
    Recently, DNN model compression based on network architecture design, e.g., SqueezeNet, attracted a lot attention. No accuracy drop on image classification is observed on these extremely compact networks, compared to well-known models. An emerging question, however, is whether these model compression techniques hurt DNN's learning ability other than classifying images on a single dataset. Our preliminary experiment shows that these compression methods could degrade domain adaptation (DA) ability, though the classification performance is preserved. Therefore, we propose a new compact network architecture and unsupervised DA method in this paper. The DNN is built on a new basic module Conv-M which provides more diverse feature extractors without significantly increasing parameters. The unified framework of our DA method will simultaneously learn invariance across domains, reduce divergence of feature representations, and adapt label prediction. Our DNN has 4.1M parameters, which is only 6.7% of AlexNet or 59% of GoogLeNet. Experiments show that our DNN obtains GoogLeNet-level accuracy both on classification and DA, and our DA method slightly outperforms previous competitive ones. Put all together, our DA strategy based on our DNN achieves state-of-the-art on sixteen of total eighteen DA tasks on popular Office-31 and Office-Caltech datasets.Comment: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'17

    dd-SNE: Domain Adaptation using Stochastic Neighborhood Embedding

    Full text link
    Deep neural networks often require copious amount of labeled-data to train their scads of parameters. Training larger and deeper networks is hard without appropriate regularization, particularly while using a small dataset. Laterally, collecting well-annotated data is expensive, time-consuming and often infeasible. A popular way to regularize these networks is to simply train the network with more data from an alternate representative dataset. This can lead to adverse effects if the statistics of the representative dataset are dissimilar to our target. This predicament is due to the problem of domain shift. Data from a shifted domain might not produce bespoke features when a feature extractor from the representative domain is used. In this paper, we propose a new technique (dd-SNE) of domain adaptation that cleverly uses stochastic neighborhood embedding techniques and a novel modified-Hausdorff distance. The proposed technique is learnable end-to-end and is therefore, ideally suited to train neural networks. Extensive experiments demonstrate that dd-SNE outperforms the current states-of-the-art and is robust to the variances in different datasets, even in the one-shot and semi-supervised learning settings. dd-SNE also demonstrates the ability to generalize to multiple domains concurrently.Comment: Accepted as Oral at CVPR 201

    Learning Condensed and Aligned Features for Unsupervised Domain Adaptation Using Label Propagation

    Full text link
    Unsupervised domain adaptation aiming to learn a specific task for one domain using another domain data has emerged to address the labeling issue in supervised learning, especially because it is difficult to obtain massive amounts of labeled data in practice. The existing methods have succeeded by reducing the difference between the embedded features of both domains, but the performance is still unsatisfactory compared to the supervised learning scheme. This is attributable to the embedded features that lay around each other but do not align perfectly and establish clearly separable clusters. We propose a novel domain adaptation method based on label propagation and cycle consistency to let the clusters of the features from the two domains overlap exactly and become clear for high accuracy. Specifically, we introduce cycle consistency to enforce the relationship between each cluster and exploit label propagation to achieve the association between the data from the perspective of the manifold structure instead of a one-to-one relation. Hence, we successfully formed aligned and discriminative clusters. We present the empirical results of our method for various domain adaptation scenarios and visualize the embedded features to prove that our method is critical for better domain adaptation
    corecore