3,524 research outputs found

    Structurally Tractable Uncertain Data

    Full text link
    Many data management applications must deal with data which is uncertain, incomplete, or noisy. However, on existing uncertain data representations, we cannot tractably perform the important query evaluation tasks of determining query possibility, certainty, or probability: these problems are hard on arbitrary uncertain input instances. We thus ask whether we could restrict the structure of uncertain data so as to guarantee the tractability of exact query evaluation. We present our tractability results for tree and tree-like uncertain data, and a vision for probabilistic rule reasoning. We also study uncertainty about order, proposing a suitable representation, and study uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium 201

    Learning Tuple Probabilities

    Get PDF
    Learning the parameters of complex probabilistic-relational models from labeled training data is a standard technique in machine learning, which has been intensively studied in the subfield of Statistical Relational Learning (SRL), but---so far---this is still an under-investigated topic in the context of Probabilistic Databases (PDBs). In this paper, we focus on learning the probability values of base tuples in a PDB from labeled lineage formulas. The resulting learning problem can be viewed as the inverse problem to confidence computations in PDBs: given a set of labeled query answers, learn the probability values of the base tuples, such that the marginal probabilities of the query answers again yield in the assigned probability labels. We analyze the learning problem from a theoretical perspective, cast it into an optimization problem, and provide an algorithm based on stochastic gradient descent. Finally, we conclude by an experimental evaluation on three real-world and one synthetic dataset, thus comparing our approach to various techniques from SRL, reasoning in information extraction, and optimization

    Exploring Unknown Universes in Probabilistic Relational Models

    Full text link
    Large probabilistic models are often shaped by a pool of known individuals (a universe) and relations between them. Lifted inference algorithms handle sets of known individuals for tractable inference. Universes may not always be known, though, or may only described by assumptions such as "small universes are more likely". Without a universe, inference is no longer possible for lifted algorithms, losing their advantage of tractable inference. The aim of this paper is to define a semantics for models with unknown universes decoupled from a specific constraint language to enable lifted and thereby, tractable inference.Comment: Also accepted at the 9th StarAI Workshop at AAAI-2
    • …
    corecore