18 research outputs found

    Learning Time/Memory-Efficient Deep Architectures with Budgeted Super Networks

    Full text link
    We propose to focus on the problem of discovering neural network architectures efficient in terms of both prediction quality and cost. For instance, our approach is able to solve the following tasks: learn a neural network able to predict well in less than 100 milliseconds or learn an efficient model that fits in a 50 Mb memory. Our contribution is a novel family of models called Budgeted Super Networks (BSN). They are learned using gradient descent techniques applied on a budgeted learning objective function which integrates a maximum authorized cost, while making no assumption on the nature of this cost. We present a set of experiments on computer vision problems and analyze the ability of our technique to deal with three different costs: the computation cost, the memory consumption cost and a distributed computation cost. We particularly show that our model can discover neural network architectures that have a better accuracy than the ResNet and Convolutional Neural Fabrics architectures on CIFAR-10 and CIFAR-100, at a lower cost.Comment: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR

    FLOPs as a Direct Optimization Objective for Learning Sparse Neural Networks

    Full text link
    There exists a plethora of techniques for inducing structured sparsity in parametric models during the optimization process, with the final goal of resource-efficient inference. However, few methods target a specific number of floating-point operations (FLOPs) as part of the optimization objective, despite many reporting FLOPs as part of the results. Furthermore, a one-size-fits-all approach ignores realistic system constraints, which differ significantly between, say, a GPU and a mobile phone -- FLOPs on the former incur less latency than on the latter; thus, it is important for practitioners to be able to specify a target number of FLOPs during model compression. In this work, we extend a state-of-the-art technique to directly incorporate FLOPs as part of the optimization objective and show that, given a desired FLOPs requirement, different neural networks can be successfully trained for image classification.Comment: 4 pages, accepted to the NIPS 2018 Workshop on Compact Deep Neural Networks with Industrial Applications (CDNNRIA

    Mixed Precision Quantization of ConvNets via Differentiable Neural Architecture Search

    Full text link
    Recent work in network quantization has substantially reduced the time and space complexity of neural network inference, enabling their deployment on embedded and mobile devices with limited computational and memory resources. However, existing quantization methods often represent all weights and activations with the same precision (bit-width). In this paper, we explore a new dimension of the design space: quantizing different layers with different bit-widths. We formulate this problem as a neural architecture search problem and propose a novel differentiable neural architecture search (DNAS) framework to efficiently explore its exponential search space with gradient-based optimization. Experiments show we surpass the state-of-the-art compression of ResNet on CIFAR-10 and ImageNet. Our quantized models with 21.1x smaller model size or 103.9x lower computational cost can still outperform baseline quantized or even full precision models

    DARTS: Differentiable Architecture Search

    Full text link
    This paper addresses the scalability challenge of architecture search by formulating the task in a differentiable manner. Unlike conventional approaches of applying evolution or reinforcement learning over a discrete and non-differentiable search space, our method is based on the continuous relaxation of the architecture representation, allowing efficient search of the architecture using gradient descent. Extensive experiments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that our algorithm excels in discovering high-performance convolutional architectures for image classification and recurrent architectures for language modeling, while being orders of magnitude faster than state-of-the-art non-differentiable techniques. Our implementation has been made publicly available to facilitate further research on efficient architecture search algorithms.Comment: Published at ICLR 2019; Code and pretrained models available at https://github.com/quark0/dart

    Modeling Neural Architecture Search Methods for Deep Networks

    Full text link
    There are many research works on the designing of architectures for the deep neural networks (DNN), which are named neural architecture search (NAS) methods. Although there are many automatic and manual techniques for NAS problems, there is no unifying model in which these NAS methods can be explored and compared. In this paper, we propose a general abstraction model for NAS methods. By using the proposed framework, it is possible to compare different design approaches for categorizing and identifying critical areas of interest in designing DNN architectures. Also, under this framework, different methods in the NAS area are summarized; hence a better view of their advantages and disadvantages is possible.Comment: 6 pages, 7 figure

    FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search

    Full text link
    Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture optimality depends on factors such as input resolution and target devices. However, existing approaches are too expensive for case-by-case redesigns. Also, previous work focuses primarily on reducing FLOPs, but FLOP count does not always reflect actual latency. To address these, we propose a differentiable neural architecture search (DNAS) framework that uses gradient-based methods to optimize ConvNet architectures, avoiding enumerating and training individual architectures separately as in previous methods. FBNets, a family of models discovered by DNAS surpass state-of-the-art models both designed manually and generated automatically. FBNet-B achieves 74.1% top-1 accuracy on ImageNet with 295M FLOPs and 23.1 ms latency on a Samsung S8 phone, 2.4x smaller and 1.5x faster than MobileNetV2-1.3 with similar accuracy. Despite higher accuracy and lower latency than MnasNet, we estimate FBNet-B's search cost is 420x smaller than MnasNet's, at only 216 GPU-hours. Searched for different resolutions and channel sizes, FBNets achieve 1.5% to 6.4% higher accuracy than MobileNetV2. The smallest FBNet achieves 50.2% accuracy and 2.9 ms latency (345 frames per second) on a Samsung S8. Over a Samsung-optimized FBNet, the iPhone-X-optimized model achieves a 1.4x speedup on an iPhone X

    SparseMask: Differentiable Connectivity Learning for Dense Image Prediction

    Full text link
    In this paper, we aim at automatically searching an efficient network architecture for dense image prediction. Particularly, we follow the encoder-decoder style and focus on designing a connectivity structure for the decoder. To achieve that, we design a densely connected network with learnable connections, named Fully Dense Network, which contains a large set of possible final connectivity structures. We then employ gradient descent to search the optimal connectivity from the dense connections. The search process is guided by a novel loss function, which pushes the weight of each connection to be binary and the connections to be sparse. The discovered connectivity achieves competitive results on two segmentation datasets, while runs more than three times faster and requires less than half parameters compared to the state-of-the-art methods. An extensive experiment shows that the discovered connectivity is compatible with various backbones and generalizes well to other dense image prediction tasks.Comment: Accepted by ICCV 2019. Code is available at https://github.com/wuhuikai/SparseMas

    Single Path One-Shot Neural Architecture Search with Uniform Sampling

    Full text link
    We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.Comment: ECCV 202

    Resolution Adaptive Networks for Efficient Inference

    Full text link
    Adaptive inference is an effective mechanism to achieve a dynamic tradeoff between accuracy and computational cost in deep networks. Existing works mainly exploit architecture redundancy in network depth or width. In this paper, we focus on spatial redundancy of input samples and propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs containing large objects with prototypical features, while only some "hard" samples need spatially detailed information. In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations, and those samples with high prediction confidence will exit early from the network without being further processed. Meanwhile, high-resolution paths in the network maintain the capability to recognize the "hard" samples. Therefore, RANet can effectively reduce the spatial redundancy involved in inferring high-resolution inputs. Empirically, we demonstrate the effectiveness of the proposed RANet on the CIFAR-10, CIFAR-100 and ImageNet datasets in both the anytime prediction setting and the budgeted batch classification setting.Comment: CVPR 202

    ADWPNAS: Architecture-Driven Weight Prediction for Neural Architecture Search

    Full text link
    How to discover and evaluate the true strength of models quickly and accurately is one of the key challenges in Neural Architecture Search (NAS). To cope with this problem, we propose an Architecture-Driven Weight Prediction (ADWP) approach for neural architecture search (NAS). In our approach, we first design an architecture-intensive search space and then train a HyperNetwork by inputting stochastic encoding architecture parameters. In the trained HyperNetwork, weights of convolution kernels can be well predicted for neural architectures in the search space. Consequently, the target architectures can be evaluated efficiently without any finetuning, thus enabling us to search fortheoptimalarchitectureinthespaceofgeneralnetworks (macro-search). Through real experiments, we evaluate the performance of the models discovered by the proposed AD-WPNAS and results show that one search procedure can be completed in 4.0 GPU hours on CIFAR-10. Moreover, the discovered model obtains a test error of 2.41% with only 1.52M parameters which is superior to the best existing models
    corecore