7 research outputs found

    Learning Theory of Distributed Regression with Bias Corrected Regularization Kernel Network

    Full text link
    Distributed learning is an effective way to analyze big data. In distributed regression, a typical approach is to divide the big data into multiple blocks, apply a base regression algorithm on each of them, and then simply average the output functions learnt from these blocks. Since the average process will decrease the variance, not the bias, bias correction is expected to improve the learning performance if the base regression algorithm is a biased one. Regularization kernel network is an effective and widely used method for nonlinear regression analysis. In this paper we will investigate a bias corrected version of regularization kernel network. We derive the error bounds when it is applied to a single data set and when it is applied as a base algorithm in distributed regression. We show that, under certain appropriate conditions, the optimal learning rates can be reached in both situations

    Optimal Rates of Distributed Regression with Imperfect Kernels

    Full text link
    Distributed machine learning systems have been receiving increasing attentions for their efficiency to process large scale data. Many distributed frameworks have been proposed for different machine learning tasks. In this paper, we study the distributed kernel regression via the divide and conquer approach. This approach has been proved asymptotically minimax optimal if the kernel is perfectly selected so that the true regression function lies in the associated reproducing kernel Hilbert space. However, this is usually, if not always, impractical because kernels that can only be selected via prior knowledge or a tuning process are hardly perfect. Instead it is more common that the kernel is good enough but imperfect in the sense that the true regression can be well approximated by but does not lie exactly in the kernel space. We show distributed kernel regression can still achieves capacity independent optimal rate in this case. To this end, we first establish a general framework that allows to analyze distributed regression with response weighted base algorithms by bounding the error of such algorithms on a single data set, provided that the error bounds has factored the impact of the unexplained variance of the response variable. Then we perform a leave one out analysis of the kernel ridge regression and bias corrected kernel ridge regression, which in combination with the aforementioned framework allows us to derive sharp error bounds and capacity independent optimal rates for the associated distributed kernel regression algorithms. As a byproduct of the thorough analysis, we also prove the kernel ridge regression can achieve rates faster than N−1N^{-1} (where NN is the sample size) in the noise free setting which, to our best knowledge, are first observed and novel in regression learning.Comment: 2 figure

    WONDER: Weighted one-shot distributed ridge regression in high dimensions

    Full text link
    In many areas, practitioners need to analyze large datasets that challenge conventional single-machine computing. To scale up data analysis, distributed and parallel computing approaches are increasingly needed. Here we study a fundamental and highly important problem in this area: How to do ridge regression in a distributed computing environment? Ridge regression is an extremely popular method for supervised learning, and has several optimality properties, thus it is important to study. We study one-shot methods that construct weighted combinations of ridge regression estimators computed on each machine. By analyzing the mean squared error in a high dimensional random-effects model where each predictor has a small effect, we discover several new phenomena. 1. Infinite-worker limit: The distributed estimator works well for very large numbers of machines, a phenomenon we call "infinite-worker limit". 2. Optimal weights: The optimal weights for combining local estimators sum to more than unity, due to the downward bias of ridge. Thus, all averaging methods are suboptimal. We also propose a new Weighted ONe-shot DistributEd Ridge regression (WONDER) algorithm. We test WONDER in simulation studies and using the Million Song Dataset as an example. There it can save at least 100x in computation time, while nearly preserving test accuracy.Comment: Gave the name "Wonder" to the algorithm, updated title, added algorithm for general non-isotropic desig

    Two-stage Best-scored Random Forest for Large-scale Regression

    Full text link
    We propose a novel method designed for large-scale regression problems, namely the two-stage best-scored random forest (TBRF). "Best-scored" means to select one regression tree with the best empirical performance out of a certain number of purely random regression tree candidates, and "two-stage" means to divide the original random tree splitting procedure into two: In stage one, the feature space is partitioned into non-overlapping cells; in stage two, child trees grow separately on these cells. The strengths of this algorithm can be summarized as follows: First of all, the pure randomness in TBRF leads to the almost optimal learning rates, and also makes ensemble learning possible, which resolves the boundary discontinuities long plaguing the existing algorithms. Secondly, the two-stage procedure paves the way for parallel computing, leading to computational efficiency. Last but not least, TBRF can serve as an inclusive framework where different mainstream regression strategies such as linear predictor and least squares support vector machines (LS-SVMs) can also be incorporated as value assignment approaches on leaves of the child trees, depending on the characteristics of the underlying data sets. Numerical assessments on comparisons with other state-of-the-art methods on several large-scale real data sets validate the promising prediction accuracy and high computational efficiency of our algorithm

    Kernel-based L_2-Boosting with Structure Constraints

    Full text link
    Developing efficient kernel methods for regression is very popular in the past decade. In this paper, utilizing boosting on kernel-based weaker learners, we propose a novel kernel-based learning algorithm called kernel-based re-scaled boosting with truncation, dubbed as KReBooT. The proposed KReBooT benefits in controlling the structure of estimators and producing sparse estimate, and is near overfitting resistant. We conduct both theoretical analysis and numerical simulations to illustrate the power of KReBooT. Theoretically, we prove that KReBooT can achieve the almost optimal numerical convergence rate for nonlinear approximation. Furthermore, using the recently developed integral operator approach and a variant of Talagrand's concentration inequality, we provide fast learning rates for KReBooT, which is a new record of boosting-type algorithms. Numerically, we carry out a series of simulations to show the promising performance of KReBooT in terms of its good generalization, near over-fitting resistance and structure constraints.Comment: 33pages, 8figure

    Kernel regression in high dimensions: Refined analysis beyond double descent

    Full text link
    In this paper, we provide a precise characterization of generalization properties of high dimensional kernel ridge regression across the under- and over-parameterized regimes, depending on whether the number of training data n exceeds the feature dimension d. By establishing a bias-variance decomposition of the expected excess risk, we show that, while the bias is (almost) independent of d and monotonically decreases with n, the variance depends on n, d and can be unimodal or monotonically decreasing under different regularization schemes. Our refined analysis goes beyond the double descent theory by showing that, depending on the data eigen-profile and the level of regularization, the kernel regression risk curve can be a double-descent-like, bell-shaped, or monotonic function of n. Experiments on synthetic and real data are conducted to support our theoretical findings.Comment: This paper was accepted by AISTATS-202

    Histogram Transform Ensembles for Large-scale Regression

    Full text link
    We propose a novel algorithm for large-scale regression problems named histogram transform ensembles (HTE), composed of random rotations, stretchings, and translations. First of all, we investigate the theoretical properties of HTE when the regression function lies in the H\"{o}lder space Ck,αC^{k,\alpha}, k∈N0k \in \mathbb{N}_0, α∈(0,1]\alpha \in (0,1]. In the case that k=0,1k=0, 1, we adopt the constant regressors and develop the na\"{i}ve histogram transforms (NHT). Within the space C0,αC^{0,\alpha}, although almost optimal convergence rates can be derived for both single and ensemble NHT, we fail to show the benefits of ensembles over single estimators theoretically. In contrast, in the subspace C1,αC^{1,\alpha}, we prove that if d≥2(1+α)/αd \geq 2(1+\alpha)/\alpha, the lower bound of the convergence rates for single NHT turns out to be worse than the upper bound of the convergence rates for ensemble NHT. In the other case when k≥2k \geq 2, the NHT may no longer be appropriate in predicting smoother regression functions. Instead, we apply kernel histogram transforms (KHT) equipped with smoother regressors such as support vector machines (SVMs), and it turns out that both single and ensemble KHT enjoy almost optimal convergence rates. Then we validate the above theoretical results by numerical experiments. On the one hand, simulations are conducted to elucidate that ensemble NHT outperform single NHT. On the other hand, the effects of bin sizes on accuracy of both NHT and KHT also accord with theoretical analysis. Last but not least, in the real-data experiments, comparisons between the ensemble KHT, equipped with adaptive histogram transforms, and other state-of-the-art large-scale regression estimators verify the effectiveness and accuracy of our algorithm.Comment: arXiv admin note: text overlap with arXiv:1911.1158
    corecore