8,752 research outputs found

    Non-parametric online market regime detection and regime clustering for multidimensional and path-dependent data structures

    Full text link
    In this work we present a non-parametric online market regime detection method for multidimensional data structures using a path-wise two-sample test derived from a maximum mean discrepancy-based similarity metric on path space that uses rough path signatures as a feature map. The latter similarity metric has been developed and applied as a discriminator in recent generative models for small data environments, and has been optimised here to the setting where the size of new incoming data is particularly small, for faster reactivity. On the same principles, we also present a path-wise method for regime clustering which extends our previous work. The presented regime clustering techniques were designed as ex-ante market analysis tools that can identify periods of approximatively similar market activity, but the new results also apply to path-wise, high dimensional-, and to non-Markovian settings as well as to data structures that exhibit autocorrelation. We demonstrate our clustering tools on easily verifiable synthetic datasets of increasing complexity, and also show how the outlined regime detection techniques can be used as fast on-line automatic regime change detectors or as outlier detection tools, including a fully automated pipeline. Finally, we apply the fine-tuned algorithms to real-world historical data including high-dimensional baskets of equities and the recent price evolution of crypto assets, and we show that our methodology swiftly and accurately indicated historical periods of market turmoil.Comment: 65 pages, 52 figure

    Evaluation Methodologies in Software Protection Research

    Full text link
    Man-at-the-end (MATE) attackers have full control over the system on which the attacked software runs, and try to break the confidentiality or integrity of assets embedded in the software. Both companies and malware authors want to prevent such attacks. This has driven an arms race between attackers and defenders, resulting in a plethora of different protection and analysis methods. However, it remains difficult to measure the strength of protections because MATE attackers can reach their goals in many different ways and a universally accepted evaluation methodology does not exist. This survey systematically reviews the evaluation methodologies of papers on obfuscation, a major class of protections against MATE attacks. For 572 papers, we collected 113 aspects of their evaluation methodologies, ranging from sample set types and sizes, over sample treatment, to performed measurements. We provide detailed insights into how the academic state of the art evaluates both the protections and analyses thereon. In summary, there is a clear need for better evaluation methodologies. We identify nine challenges for software protection evaluations, which represent threats to the validity, reproducibility, and interpretation of research results in the context of MATE attacks

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    EnTri: Ensemble Learning with Tri-level Representations for Explainable Scene Recognition

    Full text link
    Scene recognition based on deep-learning has made significant progress, but there are still limitations in its performance due to challenges posed by inter-class similarities and intra-class dissimilarities. Furthermore, prior research has primarily focused on improving classification accuracy, yet it has given less attention to achieving interpretable, precise scene classification. Therefore, we are motivated to propose EnTri, an ensemble scene recognition framework that employs ensemble learning using a hierarchy of visual features. EnTri represents features at three distinct levels of detail: pixel-level, semantic segmentation-level, and object class and frequency level. By incorporating distinct feature encoding schemes of differing complexity and leveraging ensemble strategies, our approach aims to improve classification accuracy while enhancing transparency and interpretability via visual and textual explanations. To achieve interpretability, we devised an extension algorithm that generates both visual and textual explanations highlighting various properties of a given scene that contribute to the final prediction of its category. This includes information about objects, statistics, spatial layout, and textural details. Through experiments on benchmark scene classification datasets, EnTri has demonstrated superiority in terms of recognition accuracy, achieving competitive performance compared to state-of-the-art approaches, with an accuracy of 87.69%, 75.56%, and 99.17% on the MIT67, SUN397, and UIUC8 datasets, respectively.Comment: Submitted to Pattern Recognition journa

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    Machine learning and mixed reality for smart aviation: applications and challenges

    Get PDF
    The aviation industry is a dynamic and ever-evolving sector. As technology advances and becomes more sophisticated, the aviation industry must keep up with the changing trends. While some airlines have made investments in machine learning and mixed reality technologies, the vast majority of regional airlines continue to rely on inefficient strategies and lack digital applications. This paper investigates the state-of-the-art applications that integrate machine learning and mixed reality into the aviation industry. Smart aerospace engineering design, manufacturing, testing, and services are being explored to increase operator productivity. Autonomous systems, self-service systems, and data visualization systems are being researched to enhance passenger experience. This paper investigate safety, environmental, technological, cost, security, capacity, and regulatory challenges of smart aviation, as well as potential solutions to ensure future quality, reliability, and efficiency

    ABC: Adaptive, Biomimetic, Configurable Robots for Smart Farms - From Cereal Phenotyping to Soft Fruit Harvesting

    Get PDF
    Currently, numerous factors, such as demographics, migration patterns, and economics, are leading to the critical labour shortage in low-skilled and physically demanding parts of agriculture. Thus, robotics can be developed for the agricultural sector to address these shortages. This study aims to develop an adaptive, biomimetic, and configurable modular robotics architecture that can be applied to multiple tasks (e.g., phenotyping, cutting, and picking), various crop varieties (e.g., wheat, strawberry, and tomato) and growing conditions. These robotic solutions cover the entire perception–action–decision-making loop targeting the phenotyping of cereals and harvesting fruits in a natural environment. The primary contributions of this thesis are as follows. a) A high-throughput method for imaging field-grown wheat in three dimensions, along with an accompanying unsupervised measuring method for obtaining individual wheat spike data are presented. The unsupervised method analyses the 3D point cloud of each trial plot, containing hundreds of wheat spikes, and calculates the average size of the wheat spike and total spike volume per plot. Experimental results reveal that the proposed algorithm can effectively identify spikes from wheat crops and individual spikes. b) Unlike cereal, soft fruit is typically harvested by manual selection and picking. To enable robotic harvesting, the initial perception system uses conditional generative adversarial networks to identify ripe fruits using synthetic data. To determine whether the strawberry is surrounded by obstacles, a cluster complexity-based perception system is further developed to classify the harvesting complexity of ripe strawberries. c) Once the harvest-ready fruit is localised using point cloud data generated by a stereo camera, the platform’s action system can coordinate the arm to reach/cut the stem using the passive motion paradigm framework, as inspired by studies on neural control of movement in the brain. Results from field trials for strawberry detection, reaching/cutting the stem of the fruit with a mean error of less than 3 mm, and extension to analysing complex canopy structures/bimanual coordination (searching/picking) are presented. Although this thesis focuses on strawberry harvesting, ongoing research is heading toward adapting the architecture to other crops. The agricultural food industry remains a labour-intensive sector with a low margin, and cost- and time-efficiency business model. The concepts presented herein can serve as a reference for future agricultural robots that are adaptive, biomimetic, and configurable

    Knowledge Distillation and Continual Learning for Optimized Deep Neural Networks

    Get PDF
    Over the past few years, deep learning (DL) has been achieving state-of-theart performance on various human tasks such as speech generation, language translation, image segmentation, and object detection. While traditional machine learning models require hand-crafted features, deep learning algorithms can automatically extract discriminative features and learn complex knowledge from large datasets. This powerful learning ability makes deep learning models attractive to both academia and big corporations. Despite their popularity, deep learning methods still have two main limitations: large memory consumption and catastrophic knowledge forgetting. First, DL algorithms use very deep neural networks (DNNs) with many billion parameters, which have a big model size and a slow inference speed. This restricts the application of DNNs in resource-constraint devices such as mobile phones and autonomous vehicles. Second, DNNs are known to suffer from catastrophic forgetting. When incrementally learning new tasks, the model performance on old tasks significantly drops. The ability to accommodate new knowledge while retaining previously learned knowledge is called continual learning. Since the realworld environments in which the model operates are always evolving, a robust neural network needs to have this continual learning ability for adapting to new changes

    Information limits of imaging through highly diffusive materials using spatiotemporal measurements of diffuse photons

    Get PDF
    Conventional medical imaging instruments are bulky, expensive, and use harmful ionising radiation. Combining ultrafast single-photon detectors and pulsed laser sources at optical wavelengths has the potential to offer inexpensive, safe, and potentially wearable alternatives. However, photons at optical wavelengths are strongly scattered by biological tissue, which corrupts direct imaging information about regions of absorbing interactions below the tissue surface. The work in this thesis studies the potential of measuring indirect imaging information by resolving diffuse photon measurements in space and time. The practical limits of imaging through highly diffusive material, e.g., biological tissue, is explored and validated with experimental measurements. The ill-posed problem of using the information in diffuse photon measurements to reconstruct images at the limits of the highly diffusive regime is tackled using probabilistic machine learning, demonstrating the potential of migrating diffuse optical imaging techniques beyond the currently accepted limits and underlining the importance of uncertainty quantification in reconstructions. The thesis is concluded with a challenging biomedical optics experiment to transmit photons diametrically through an adult human head. This problem was tackled experimentally and numerically using an anatomically accurate Monte Carlo simulation which uncovered key practical considerations when detecting photons at the extreme limits of the highly diffusive regime. Although the experimental measurements were inconclusive, comparisons with the numerical results were promising. More in-depth numerical simulations indicated that light could be guided in regions of low scattering and absorption to reach deep areas inside the head, and photons can, in principle, be transmitted through the entire diameter of the head. The collective evidence presented in this thesis reveals the potential of diffuse optical imaging to extend beyond the currently accepted limits to non-invasively image deep regions of the human body and brain using optical wavelengths
    • …
    corecore