52,789 research outputs found

    Learning Hierarchical Representations For Video Analysis Using Deep Learning

    Get PDF
    With the exponential growth of the digital data, video content analysis (e.g., action, event recognition) has been drawing increasing attention from computer vision researchers. Effective modeling of the objects, scenes, and motions is critical for visual understanding. Recently there has been a growing interest in the bio-inspired deep learning models, which has shown impressive results in speech and object recognition. The deep learning models are formed by the composition of multiple non-linear transformations of the data, with the goal of yielding more abstract and ultimately more useful representations. The advantages of the deep models are three fold: 1) They learn the features directly from the raw signal in contrast to the hand-designed features. 2) The learning can be unsupervised, which is suitable for large data where labeling all the data is expensive and unpractical. 3) They learn a hierarchy of features one level at a time and the layerwise stacking of feature extraction, this often yields better representations. However, not many deep learning models have been proposed to solve the problems in video analysis, especially videos “in a wild”. Most of them are either dealing with simple datasets, or limited to the low-level local spatial-temporal feature descriptors for action recognition. Moreover, as the learning algorithms are unsupervised, the learned features preserve generative properties rather than the discriminative ones which are more favorable in the classification tasks. In this context, the thesis makes two major contributions. First, we propose several formulations and extensions of deep learning methods which learn hierarchical representations for three challenging video analysis tasks, including complex event recognition, object detection in videos and measuring action similarity. The proposed methods are extensively demonstrated for each work on the state-of-the-art challenging datasets. Besides learning the low-level local features, higher level representations are further designed to be learned in the context of applications. The data-driven concept representations and sparse representation of the events are learned for complex event recognition; the representations for object body parts iii and structures are learned for object detection in videos; and the relational motion features and similarity metrics between video pairs are learned simultaneously for action verification. Second, in order to learn discriminative and compact features, we propose a new feature learning method using a deep neural network based on auto encoders. It differs from the existing unsupervised feature learning methods in two ways: first it optimizes both discriminative and generative properties of the features simultaneously, which gives our features a better discriminative ability. Second, our learned features are more compact, while the unsupervised feature learning methods usually learn a redundant set of over-complete features. Extensive experiments with quantitative and qualitative results on the tasks of human detection and action verification demonstrate the superiority of our proposed models

    An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond Feature and Signal

    Full text link
    In this paper, we study a new problem arising from the emerging MPEG standardization effort Video Coding for Machine (VCM), which aims to bridge the gap between visual feature compression and classical video coding. VCM is committed to address the requirement of compact signal representation for both machine and human vision in a more or less scalable way. To this end, we make endeavors in leveraging the strength of predictive and generative models to support advanced compression techniques for both machine and human vision tasks simultaneously, in which visual features serve as a bridge to connect signal-level and task-level compact representations in a scalable manner. Specifically, we employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern. By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames via a generative model, relying on the appearance of the coded key frames. Meanwhile, the sparse motion pattern is compact and highly effective for high-level vision tasks, e.g. action recognition. Experimental results demonstrate that our method yields much better reconstruction quality compared with the traditional video codecs (0.0063 gain in SSIM), as well as state-of-the-art action recognition performance over highly compressed videos (9.4% gain in recognition accuracy), which showcases a promising paradigm of coding signal for both human and machine vision

    Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions

    Full text link
    We present a comparative evaluation of various techniques for action recognition while keeping as many variables as possible controlled. We employ two categories of Riemannian manifolds: symmetric positive definite matrices and linear subspaces. For both categories we use their corresponding nearest neighbour classifiers, kernels, and recent kernelised sparse representations. We compare against traditional action recognition techniques based on Gaussian mixture models and Fisher vectors (FVs). We evaluate these action recognition techniques under ideal conditions, as well as their sensitivity in more challenging conditions (variations in scale and translation). Despite recent advancements for handling manifolds, manifold based techniques obtain the lowest performance and their kernel representations are more unstable in the presence of challenging conditions. The FV approach obtains the highest accuracy under ideal conditions. Moreover, FV best deals with moderate scale and translation changes

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader
    • …
    corecore