5 research outputs found

    L0 Sparse Inverse Covariance Estimation

    Full text link
    Recently, there has been focus on penalized log-likelihood covariance estimation for sparse inverse covariance (precision) matrices. The penalty is responsible for inducing sparsity, and a very common choice is the convex l1l_1 norm. However, the best estimator performance is not always achieved with this penalty. The most natural sparsity promoting "norm" is the non-convex l0l_0 penalty but its lack of convexity has deterred its use in sparse maximum likelihood estimation. In this paper we consider non-convex l0l_0 penalized log-likelihood inverse covariance estimation and present a novel cyclic descent algorithm for its optimization. Convergence to a local minimizer is proved, which is highly non-trivial, and we demonstrate via simulations the reduced bias and superior quality of the l0l_0 penalty as compared to the l1l_1 penalty

    Bayesian topology learning and noise removal from network data

    Get PDF
    Learning the topology of a graph from available data is of great interest in many emerging applications. Some examples are social networks, internet of things networks (intelligent IoT and industrial IoT), biological connection networks, sensor networks and traffic network patterns. In this paper, a graph topology inference approach is proposed to learn the underlying graph structure from a given set of noisy multi-variate observations, which are modeled as graph signals generated from a Gaussian Markov Random Field (GMRF) process. A factor analysis model is applied to represent the graph signals in a latent space where the basis is related to the underlying graph structure. An optimal graph filter is also developed to recover the graph signals from noisy observations. In the final step, an optimization problem is proposed to learn the underlying graph topology from the recovered signals. Moreover, a fast algorithm employing the proximal point method has been proposed to solve the problem efficiently. Experimental results employing both synthetic and real data show the effectiveness of the proposed method in recovering the signals and inferring the underlying graph

    Optimization Algorithms for Machine Learning Designed for Parallel and Distributed Environments

    Get PDF
    This thesis proposes several optimization methods that utilize parallel algorithms for large-scale machine learning problems. The overall theme is network-based machine learning algorithms; in particular, we consider two machine learning models: graphical models and neural networks. Graphical models are methods categorized under unsupervised machine learning, aiming at recovering conditional dependencies among random variables from observed samples of a multivariable distribution. Neural networks, on the other hand, are methods that learn an implicit approximation to underlying true nonlinear functions based on sample data and utilize that information to generalize to validation data. The goal of finding the best methods relies on an optimization problem tasked with training such models. Improvements in current methods of solving the optimization problem for graphical models are obtained by parallelization and the use of a new update and a new step-size selection rule in the coordinate descent algorithms designed for large-scale problems. For training deep neural networks, we consider the second-order optimization algorithms within trust-region-like optimization frameworks. Deep networks are represented using large-scale vectors of weights and are trained based on very large datasets. Hence, obtaining second-order information is very expensive for these networks. In this thesis, we undertake an extensive exploration of algorithms that use a small number of curvature evaluations and are hence faster than other existing methods
    corecore