7 research outputs found

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Context Mover's Distance & Barycenters: Optimal Transport of Contexts for Building Representations

    Full text link
    We present a framework for building unsupervised representations of entities and their compositions, where each entity is viewed as a probability distribution rather than a vector embedding. In particular, this distribution is supported over the contexts which co-occur with the entity and are embedded in a suitable low-dimensional space. This enables us to consider representation learning from the perspective of Optimal Transport and take advantage of its tools such as Wasserstein distance and barycenters. We elaborate how the method can be applied for obtaining unsupervised representations of text and illustrate the performance (quantitatively as well as qualitatively) on tasks such as measuring sentence similarity, word entailment and similarity, where we empirically observe significant gains (e.g., 4.1% relative improvement over Sent2vec, GenSen). The key benefits of the proposed approach include: (a) capturing uncertainty and polysemy via modeling the entities as distributions, (b) utilizing the underlying geometry of the particular task (with the ground cost), (c) simultaneously providing interpretability with the notion of optimal transport between contexts and (d) easy applicability on top of existing point embedding methods. The code, as well as prebuilt histograms, are available under https://github.com/context-mover/.Comment: AISTATS 2020. Also, accepted previously at ICLR 2019 DeepGenStruct Worksho

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.WortreprĂ€sentationen, sogenannte Word Embeddings, sind generische ReprĂ€sentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nĂ€chsten Nachbarn. Viele Probleme der Computerlinguistik können durch WortreprĂ€sentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den WortreprĂ€sentationen enthalten sind. In der ersten Publikation untersuchen wir ĂŒberwachte, graphenbasierte Methodenn um WortreprĂ€sentationen zu erzeugen. Diese Methoden fĂŒhren zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, fĂŒr welches zwei Ă€quivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne KnotenĂ€hnlichkeiten effektiv berechnen, da graphenbasierte WortreprĂ€sentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende WortreprĂ€sentationen und kombinieren diese mit semantischen Ressourcen, indem wir ReprĂ€sentationen fĂŒr Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und EntitĂ€ten. Die FlexibilitĂ€t unserer Methode zeichnet sich dadurch aus, dass wir beliebige WortreprĂ€sentationen als Eingabe verwenden können und keinen zusĂ€tzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der WortreprĂ€sentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten ReprĂ€sentationen zur Erstellung von WörterbĂŒchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und HĂ€ufigkeit. Die letzte Publikation prĂ€sentiert eine neue Rechenmethode fĂŒr die interpretierbaren ultra-kompakten UntervektorrĂ€ume -- Stimmung, Konkretheit, HĂ€ufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort fĂŒr Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”

    One Model to Rule them all: Multitask and Multilingual Modelling for Lexical Analysis

    Get PDF
    When learning a new skill, you take advantage of your preexisting skills and knowledge. For instance, if you are a skilled violinist, you will likely have an easier time learning to play cello. Similarly, when learning a new language you take advantage of the languages you already speak. For instance, if your native language is Norwegian and you decide to learn Dutch, the lexical overlap between these two languages will likely benefit your rate of language acquisition. This thesis deals with the intersection of learning multiple tasks and learning multiple languages in the context of Natural Language Processing (NLP), which can be defined as the study of computational processing of human language. Although these two types of learning may seem different on the surface, we will see that they share many similarities. The traditional approach in NLP is to consider a single task for a single language at a time. However, recent advances allow for broadening this approach, by considering data for multiple tasks and languages simultaneously. This is an important approach to explore further as the key to improving the reliability of NLP, especially for low-resource languages, is to take advantage of all relevant data whenever possible. In doing so, the hope is that in the long term, low-resource languages can benefit from the advances made in NLP which are currently to a large extent reserved for high-resource languages. This, in turn, may then have positive consequences for, e.g., language preservation, as speakers of minority languages will have a lower degree of pressure to using high-resource languages. In the short term, answering the specific research questions posed should be of use to NLP researchers working towards the same goal.Comment: PhD thesis, University of Groninge

    Semantic vector representations of senses, concepts and entities and their applications in natural language processing

    Get PDF
    Representation learning lies at the core of Artificial Intelligence (AI) and Natural Language Processing (NLP). Most recent research has focused on develop representations at the word level. In particular, the representation of words in a vector space has been viewed as one of the most important successes of lexical semantics and NLP in recent years. The generalization power and flexibility of these representations have enabled their integration into a wide variety of text-based applications, where they have proved extremely beneficial. However, these representations are hampered by an important limitation, as they are unable to model different meanings of the same word. In order to deal with this issue, in this thesis we analyze and develop flexible semantic representations of meanings, i.e. senses, concepts and entities. This finer distinction enables us to model semantic information at a deeper level, which in turn is essential for dealing with ambiguity. In addition, we view these (vector) representations as a connecting bridge between lexical resources and textual data, encoding knowledge from both sources. We argue that these sense-level representations, similarly to the importance of word embeddings, constitute a first step for seamlessly integrating explicit knowledge into NLP applications, while focusing on the deeper sense level. Its use does not only aim at solving the inherent lexical ambiguity of language, but also represents a first step to the integration of background knowledge into NLP applications. Multilinguality is another key feature of these representations, as we explore the construction language-independent and multilingual techniques that can be applied to arbitrary languages, and also across languages. We propose simple unsupervised and supervised frameworks which make use of these vector representations for word sense disambiguation, a key application in natural language understanding, and other downstream applications such as text categorization and sentiment analysis. Given the nature of the vectors, we also investigate their effectiveness for improving and enriching knowledge bases, by reducing the sense granularity of their sense inventories and extending them with domain labels, hypernyms and collocations
    corecore