7 research outputs found

    Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation

    Full text link
    We propose a convolutional network with hierarchical classifiers for per-pixel semantic segmentation, which is able to be trained on multiple, heterogeneous datasets and exploit their semantic hierarchy. Our network is the first to be simultaneously trained on three different datasets from the intelligent vehicles domain, i.e. Cityscapes, GTSDB and Mapillary Vistas, and is able to handle different semantic level-of-detail, class imbalances, and different annotation types, i.e. dense per-pixel and sparse bounding-box labels. We assess our hierarchical approach, by comparing against flat, non-hierarchical classifiers and we show improvements in mean pixel accuracy of 13.0% for Cityscapes classes and 2.4% for Vistas classes and 32.3% for GTSDB classes. Our implementation achieves inference rates of 17 fps at a resolution of 520x706 for 108 classes running on a GPU.Comment: IEEE Intelligent Vehicles 201

    On Boosting Semantic Street Scene Segmentation with Weak Supervision

    Full text link
    Training convolutional networks for semantic segmentation requires per-pixel ground truth labels, which are very time consuming and hence costly to obtain. Therefore, in this work, we research and develop a hierarchical deep network architecture and the corresponding loss for semantic segmentation that can be trained from weak supervision, such as bounding boxes or image level labels, as well as from strong per-pixel supervision. We demonstrate that the hierarchical structure and the simultaneous training on strong (per-pixel) and weak (bounding boxes) labels, even from separate datasets, constantly increases the performance against per-pixel only training. Moreover, we explore the more challenging case of adding weak image-level labels. We collect street scene images and weak labels from the immense Open Images dataset to generate the OpenScapes dataset, and we use this novel dataset to increase segmentation performance on two established per-pixel labeled datasets, Cityscapes and Vistas. We report performance gains up to +13.2% mIoU on crucial street scene classes, and inference speed of 20 fps on a Titan V GPU for Cityscapes at 512 x 1024 resolution. Our network and OpenScapes dataset are shared with the research community.Comment: Oral presentation IEEE IV 201

    Non-parametric spatially constrained local prior for scene parsing on real-world data

    Full text link
    Scene parsing aims to recognize the object category of every pixel in scene images, and it plays a central role in image content understanding and computer vision applications. However, accurate scene parsing from unconstrained real-world data is still a challenging task. In this paper, we present the non-parametric Spatially Constrained Local Prior (SCLP) for scene parsing on realistic data. For a given query image, the non-parametric SCLP is learnt by first retrieving a subset of most similar training images to the query image and then collecting prior information about object co-occurrence statistics between spatial image blocks and between adjacent superpixels from the retrieved subset. The SCLP is powerful in capturing both long- and short-range context about inter-object correlations in the query image and can be effectively integrated with traditional visual features to refine the classification results. Our experiments on the SIFT Flow and PASCAL-Context benchmark datasets show that the non-parametric SCLP used in conjunction with superpixel-level visual features achieves one of the top performance compared with state-of-the-art approaches.Comment: 10 pages, journa

    Diversely-Supervised Visual Product Search

    Get PDF
    corecore